
Paging Multiple Users in Cellular Network:
Yellow Page and Conference Call Problems

Amotz Bar-Noy1, Panagiotis Cheilaris2, and Yi Feng1

1 Department of Computer Science, City University of New York
2 Center for Advanced Studies in Mathematics, Ben-Gurion Univ. of the Negev, Israel

Abstract. Mobile users are roaming in a zone of cells in a cellular net-
work system. The probabilities of each user residing in each cell are
known, and all probabilities are independent. The task is to find any
one, or all, of the users, by paging the cells in a predetermined number
of rounds. In each round, any subset of the cells can be paged. When a
cell is paged, the list of users in it is returned. The paging process termi-
nates when the required user(s) are found. The objective is to minimize
the expected number of paged cells. Finding any one user is known as the
yellow page problem, and finding all users is known as the conference call
problem. The conference call problem has been proved NP-hard, and a
polynomial time approximation scheme exists. We study both problems
in a unified framework. We introduce three methods for computing the
paging cost. We give a hierarchical classification of users. For certain
classes of users, we either provide polynomial time optimal solutions, or
provide relatively efficient exponential time solutions. We design a family
of twelve fast greedy heuristics that generate competitive paging strate-
gies. We implement optimal algorithms and non-optimal heuristics. We
test the performance of our greedy heuristics on many patterns of input
data with different parameters. We select the best heuristics for both
problems based on our simulation. We evaluate their performances on
randomly generated Zipf and uniform data and on real user data.

1 Introduction

In cellular network systems, when a call arrives for a user, the system must
know in which cell the user is located in order to establish a connection. Such a
locating process is usually conducted by paging.

Let a user roam in a set of N cells: {C1, . . . , CN}. With probability pn the
user is located in cell Cn. All pis are independent. The system pages the cells in
rounds. Once the cell that contains the user is paged, it reports to the system
and the paging process terminates. To ensure the quality of service, the paging
process must be conducted in at most D rounds. In each round, any subset
of the cells could be paged. Thus, a paging strategy is an ordered D-partition
of the cells, such that, in the dth round, the cells in dth part are paged. The
cost of a paging strategy is the expected number of cells paged until the user
is located. Our objective is to design algorithms that compute paging strategies
that minimizes paging costs.

In a variety of applications, e.g., to establish a conference call, we need to
mutually page multiple users in a cellular network system. Suppose M users

roam in a set of N cells, {C1, . . . , CN}. With probability pm,n, user m is located
in cell Cn. All probabilities pm,ns are independent. Our goal is find any one,
some, or all of the users in at most D rounds. When a cell is paged, we become
aware of the list of user(s) that reside in it. The paging process terminates as
soon as the desired user(s) are found. The same objective remains: to minimize
the expected number of paged cells.

In the multiple user paging problem, on one extreme, we want to find all the
users so that a conference call can be established. We call this the conference
call problem. On the other extreme, we only need to find any one of the users,
no matter who. This is similar to when we look for information in a yellow page
book: We stop after finding the first useful information in a category. We call
this the yellow page problem. In this paper, we study both the yellow page and
conference call problems, showing a kind of duality between the two problems.

Example: Suppose 2 users roam in 3 cells, C1, C2, C3, with probabilities 0.5, 0.3,
0.2 (user 1) and 0.4, 0.1, 0.5 (user 2), respectively. For the paging strategy that
pages C1 and C2 in the first round and C3 in the second round, if we only search
for user 1, by probability (0.5+0.3) we page 2 cells; by probability 0.2 that we fail
in the first round, we page 3 cells. The paging cost is (0.5+0.3) ·2+0.2 ·3 = 2.2.
For the same paging strategy, in the conference call problem, the probability that
both users are in cells C1, C2 (i.e., paging stops after the first round and only 2
cells are paged) is (0.5 + 0.3) · (0.4 + 0.1) = 0.4. Otherwise, all 3 cells are paged.
The expected cost is 0.4 · 2 + (1− 0.4) · 3 = 2.6. Again for the same strategy, in
the yellow page problem, both users are in C3 with probability 0.2 · 0.5 = 0.1, in
which case no user is found in the first round and we page all 3 cells. Otherwise,
we only page the first 2 cells. The expected cost is 0.1 · 3 + (1− 0.1) · 2 = 2.1.

Motivation: The cost of updating locations by users in Cellular Networks could
be very expensive if users update their location each time they move from cell
to cell. As a result, many systems partition the cells into zones where users
report their new locations only when they enter a different zone. To locate a
user, the system needs to page it in the zone of cells where it last reports its
location. This scheme is part of one of the location management solutions (see
survey [AMHUW]) where the paging step described above is a common task. It
follows that any a priori knowledge of user locations, that can either be provided
by the users or can be extracted from log files, will help the system to reduce the
expected paging cost. There are several other applications to the paging prob-
lem. In wireless sensor networks, the system collects information from sensors by
probing them. Such probes are costly (usually batteries of wireless sensors) and
therefore the system needs to arrange efficient information collection strategy
such that the number of probes is minimized. Another application is the task of
searching information on the Internet where search engines consume computa-
tional resource by accessing Internet cache databases. Since search request comes
massively and frequently, the search engine system needs to better schedule the
resource accessing by processing multiple search requests together, and arrange
them in a good schedule.

Previous work: The problem of searching a single user in cellular networks
under delay constraint D has been studied in [GKS,RY1,KGWH,BFG]. An effi-
cient, O(ND) time, algorithm computing the optimal cost solution exists based
on dynamic programming. The papers [RY2,GH] considered the task of search-
ing multiple users but as a collection of many single user search tasks that occur
concurrently and therefore finding each one of the users is a success.

The conference call problem was introduced in [BM2]. The authors proved
NP-hardness of the problem, and showed a natural greedy algorithm is an e

e−1 -
approximation. In [EL2], the authors introduced a PTAS to the conference call
problem for any constant number of paging rounds. In [BN], the authors studied
the conference call problem with an additional bandwidth constraint, such that
in each round, a limited number of users in each cell can be paged. The NP-
hardness of the problem was shown, and a fast heuristic that minimized both
delay constraint and paging cost was presented.

In [EL1], the authors explored another version of the conference call problem:
instead of paging a cell and collecting all users in it, the system queries a cell by
asking if a specific user is in it, and gets a boolean answer. The authors showed
hardness and provided approximation algorithms in this setting.

The yellow page problem has not been studied to the best of our knowledge
in the context of partitioning and scheduling. In [KKM], the authors explored a
more general dynamic version of the problem. They showed it is NP-hard and
provided a 4-approximation algorithm. In [CFK], the authors studied a similar
problem. The problem differs from the yellow page problem in the parameter of
number of users M . They proved its NP-hardness and provided an efficient ap-
proximation algorithm. In [W], the author discussed the yellow page problem in
the context of efficiently finding alternative investment and provided heuristical
solutions in a continuous model (in contrast to our discrete model).

Our contribution: In the problem of paging multiple users in a cellular net-
work, computing the paging cost itself becomes an important task and is es-
sential to understand the problem. We present three methods for computing
the paging cost: two of them will be used in proving lemmas and constructing
optimal algorithms, the other (the most efficient) one will be used in heuris-
tics. We conjecture that, in addition to the conference call problem, the yellow
page problem is also NP-hard, therefore we give a hierarchical classification of
users and provide efficient optimal algorithms for certain interesting classes of
users. When the delay constraint equals the number of cells, i.e., D = N , we
present polynomial time algorithms for monotonic users and disjointed users,
which are very representative cases for some applications. The optimal solution
in the D = N case is a permutation of the cells and thus a naive optimal algo-
rithm has time complexity on the order of N !. However, by exploiting properties
of the optimal solution, we design instead a dynamic programming algorithm
of time complexity on the order of 2N . This algorithm will be later used as a
benchmark to evaluate our heuristics. In addition to optimal algorithms, we de-
sign a family of twelve greedy heuristics that belong to four groups. To evaluate
their performance, we test them on several types of data with many settings and

parameters. We also test them on a real data with 171929 appearances of 996
users in 5625 cells in 31 consecutive days, acquired from a cell phone provider.
We find the best heuristic for each problem that outperform the other heuristics
on almost all instances. We also measure the running time of our algorithms on
a real machine in addition to the theoretical analysis.

2 Preliminaries

Let M users roam N cells and pm,n be the probability of user m being in cell
Cn. Given a bound D on the number of rounds (with 1 ≤ D ≤ N), a paging
strategy A = 〈A1, . . . , AD〉 is an ordered partition of the set of cells {C1 . . . CN},
such that, in the dth round, cells in part Ad are paged. Given a paging strategy
A = 〈A1, . . . , AD〉, let Pm,d be the the probability of user m being in any cell
in part Ad, i.e., Pm,d =

∑
Cn∈Ad

pm,n. Denote the suffix probability by Rm,d =∑N
i=d+1 Pm,i and the prefix probability by Qm,d =

∑d
i=1 Pm,i. Let Sd be the

number of cells in the first d parts, A1, . . ., Ad. By convention, S0 = 0.
We describe three methods that compute the paging cost of the yellow page

problem and the conference call problem. The first two are used in our proofs
while the third is used by our simulations since it is computationally the most
efficient. Let YP(A) be the cost of the yellow page problem and CC(A) be the
cost of the conference call problem, on paging strategy A. Consider the vector
d = (d1, . . . , dM) ∈ {1, . . . , D}M , which encodes in which part each user is (i.e.,
user m is in part dm, for 1 ≤ m ≤M).

Combinatorial Computation: For a part location vector (d1, . . . , dM), which
occurs with probability

∏M
m=1 Pm,dm

, the strategy pays a cost of Smin{d1,...,dM}
for the yellow page problem (i.e., it pages in parts until it finds the first part
that contains some user) and therefore:

YP(A) =
∑

d∈{1,...,D}M

(
Smin{d1,...,dM} ·

M∏
m=1

Pm,dm

)
. (1)

Similarly, the cost of the conference call problem is:

CC(A) =
∑

d∈{1,...,D}M

(
Smax{d1,...,dM} ·

M∏
m=1

Pm,dm

)
, (2)

where the only difference is that for each part location vector, the strategy pays
a cost of Smax{d1,...,dM}, because it has to page also all cells in the last part that
contains a user.
Time Complexity: Θ(MN + (M +D)DM).

Recursive computation: In the yellow page problem, we extend the defi-
nition of cost, so that YP(〈Ad, . . . , AD〉) is the expected cost of paging parts
〈Ad, . . . , AD〉 given the condition that no user is found in parts A1, . . . , Ad−1. If

no user has been found in the first (D− 1) rounds, we must page all the cells in
AD, i.e., YP(〈AD〉) = |AD|. The recursion step is

YP(〈Ad, . . . , AD〉) = |Ad|+
∏M
m=1Rm,d∏M
m=1Rm,d−1

YP(〈Ad+1, . . . , AD〉) , (3)

because to page users in Ad, . . . , AD given that no users are in A1, . . . , Ad−1,
we must page cells in Ad by paying a cost of |Ad| and if no user is found there
(an event with probability

∏M
m=1Rm,d/

∏M
m=1Rm,d−1) we pay an extra cost of

YP(〈Ad+1, . . . , AD〉).
Let CC(〈A1, . . . , Ad〉) be the conference call cost of paging all users in parts

A1, . . . , Ad. The recursion base is CC(〈A1〉) =
∏M
m=1Qm,1|A1|, since if all users

are in cells of part A1, we page |A1| cells. The recursion step is

CC(〈A1, . . . , Ad〉) = CC(〈A1, . . . , Ad−1〉) +

(
M∏
m=1

Qm,d −
M∏
m=1

Qm,d−1

)
|Ad|,

(4)
because to page all users in parts A1, . . . , Ad, we must page parts A1, . . . , Ad−1

first and pay a cost of CC(〈A1, . . . , Ad−1〉), and with probability that at least
one user is in Ad, we pay an extra cost of |Ad|.
Time Complexity: Θ(MN +MD).

Exclusive Computation: With probability
∏M
m=1Rm,d−1, all users are in parts

{Ad . . . AD}; with probability
∏M
m=1Rm,d, all users are in parts {Ad+1 . . . AD}.

Thus, with the difference of the above probabilities, at least one user is in part
Ad but no user is in parts A1 . . . Ad−1, in which case we need to page exactly
Sd cells. Summing through d = 1, . . . , D, we have the cost for the yellow page
problem.

YP(A) =
D∑
d=1

(
Sd ·

(
M∏
m=1

Rm,d−1 −
M∏
m=1

Rm,d

))
(5)

Similarly, in the conference call problem, with probability
∏M
m=1Qm,d, all

users are in parts {A1 . . . Ad} and with probability
∏M
m=1Qm,d−1, all users are

in parts {A1 . . . Ad−1}. Thus, with the difference of the above probabilities, at
least one user is in part Ad and all users are in parts A1 . . . Ad, in which case we
need to page exactly Sd cells.

CC(A) =
D∑
d=1

(
Sd ·

(
M∏
m=1

Qm,d −
M∏
m=1

Qm,d−1

))
(6)

Time Complexity: Θ(MN +MD)

3 Types of Users

In [BM2], the authors proved that the conference call problem is NP-hard. We
conjecture that the yellow page problem is also NP-hard. In Sec.4, we observe

some “duality” between the two problems. Since the general setting is hard to
tackle, we study some interesting restricted classes of instances, for which we
provide more efficient optimal solutions – some have polynomial running time
and some have improved exponential running time. Toward that goal, we present
a hierarchical classification of types of users.

We define a few properties for a set of M users according to their probabilities
in the set of cells. A set of users is identical if for any cell Cn ∈ {C1, . . . , CN},
p1,n = · · · = pM,n. A set of users is uniform if for each user m = 1 . . .M , pm,n is
either 0 or 1/k, where k is the number of non-zero entries in {pm,1, . . . , pm,N}.
A set of users is similar, if for all users m = 2, . . . ,M , {pm,1, . . . , pm,N} is some
permutation of user 1’s probabilities {p1,1, . . . , p1,N}. A set of users is disjoint
if for each cell Cn ∈ {C1, . . . , CN}, there is exactly one non-zero entry pm,n,
for some m = 1, . . . ,M . We present the combinations of these properties in a
hierarchy in Fig. 2 in Appendix A.

4 Optimal Solutions

In this section, we first present efficient algorithms for both problems to compute
the paging cost for a predetermined order of the cells. Based on these algorithms,
we describe relatively efficient optimal solutions to some types of users (and their
ancestor types in the hierarchy described in Fig. 2 in Appendix A). We defer
some of the proofs of our statements to Appendix B.

Given an order of the cells, say 〈C1, . . . , CN 〉 (without loss of generality), a
paging strategy A = 〈A1, . . . , AD〉 is said to respect the above order if for any
cells Ci, Cj with i < j, we have Ci ∈ Adi

and Cj ∈ Adj
with di ≤ dj . Given an

order of the cells, Algorithms 1 (for the YP problem) and 2 (for the CC problem)
compute the optimal paging cost and corresponding strategy that respects this
order, in polynomial time.

In Algorithm 1, let hyp
n,d denote the optimal cost of paging cells {Cn, . . . , CN}

in d rounds given the condition that no user locates in cells {C1, . . . , Cn−1}. Our
objective is to find hyp

1,D. It is not difficult to see that hyp
n,1 = N−n+1. To compute

hyp
n,d, we need to search through all possible js with n + 1 ≤ j ≤ n − d + 1 for

the strategy of minimum cost that pages cells {Cj , . . . , CN} in the last (d − 1)
rounds and pages cells {Cn, . . . , Cj−1} in the previous round; the inner loop (∗)
follows equation (3)).

Algorithm 1 Dynamic programming algorithm, respect order 〈C1, . . . , CN 〉,
yellow page, cost = DPYP(p[M][N], D)

for n = 1 . . . N do
hyp

n,1 ← N − n + 1
for d = 2 . . . D do

for n = 1 . . . (N − d) do
hyp

n,d ← minn−d+1
j=n+1 |j−n|+ (

∏M
m=1 Rm,n−

∏M
m=1 Rm,j)/

∏M
m=1 Rm,n ·hyp

j,d−1 (∗)
return hyp

1,D

In Algorithm 2, let hcc
n,d denote the optimal cost of paging cells {C1, . . . , Cn}

in d rounds. Our objective is to find hcc
N,D. It is not difficult to see that hcc

n,1 = n.
To compute hcc

n,d, we need to search through all possible js with (d− 1) ≤ j < n
for the strategy of minimum cost that pages cells {C1, . . . , Cj} in the first (d−1)
rounds and pages cells {Cj+1, . . . , Cn} in the dth round; the inner loop (∗) follows
equation (4).

Algorithm 2 Dynamic programming algorithm, respect order 〈C1, . . . , CN 〉,
conference call, cost = DPCC(p[M][N], D)

for n = 1 . . . N do
hcc

n,1 ← n
for d = 2 . . . D do

for n = d . . . N do
hcc

n,d ← minn−1
j=d−1 hcc

j,d−1 +
(∏M

m=1 Qm,n −
∏M

m=1 Qm,j

)
|n− j| (∗)

return hcc
N,D

The correctness of Algorithms 1 and 2 follows from the fact that, under
the particular order constraint, any sub-partition of an optimal paging strategy
must be sub-optimal within itself; otherwise, replacing the sub-partition with
the alternative sub-optimal paging strategy would gain a better paging strategy
than optimal. We omit details of a proof here, but a formal proof can be adapted
from [KGWH].

Lemma 1. The running time of Algorithms 1 and 2 is Θ(MDN2)

Monotonic Users: A set of users is called monotonic if there is a permutation
of cells, w.l.o.g., say 〈C1, . . . , CN 〉, such that pm,1 ≥ · · · ≥ pm,N for every m ∈
{1, . . . ,M}. Let this permutation be the monotonic order of the cells for the
monotonic users.

Lemma 2. For monotonic users, the optimal paging strategies for both the yel-
low page and conference call problems follow the monotonic order of the cells.

Applying Algorithms 1 and 2 on the monotonic order yields:

Corollary 1. The optimal paging strategies for both the yellow page problem and
the conference call problem for monotonic users can be computed in polynomial
time for any D, M , and N .

D=N, Duality: An interesting case is when D = N , i.e., sequential searching,
in which a paging strategy is a permutation of the cells. The conference call
problem has been proved NP-Hard in [BM2]. Although we have not yet proved
the NP-hardness for yellow page problem, we show that there is some kind of
duality between the two problems.

Lemma 3. Let A be a paging strategy that pages M users in N cells in D =
N rounds. Let an instance of yellow page with probabilities pm,n. Let another
instance for the conference problem with probabilities qm,n = pm,N+1−n. Then,
YP(A, pm,n) + CC(A, qm,n) = N + 1.

Corollary 2. When D = N , the maximization problem of yellow page is equiv-
alent to the minimization problem of conference call, and vice versa.

D=N, Arbitrary User: When D = N , a brute-force approach to find the opti-
mal strategy is to test all permutations of the cells. This method requires Θ(N !)
time. We present lemmas, which allow us to give instead a Θ(2N) algorithm that
generates the optimal permutation.

Lemma 4. In the yellow page problem, if 〈Ci1 , . . . Cin〉 is an optimal paging
strategy of paging cells {Ci1 , . . . Cin} given the condition that no user is located
in the rest of cells, then any suffix of it, 〈Cik , . . . Cin〉, for 1 ≤ k ≤ n, is an
optimal paging strategy that pages cells 〈Cik , . . . Cin〉 given no user is located in
any other cells (except in {Cik , . . . Cin}).

Lemma 5. In the conference call problem, if 〈Ci1 , . . . Cin〉 is an optimal paging
strategy of paging cells {Ci1 , . . . Cin} in the first in rounds, then any prefix of it,
〈Ci1 , . . . Cik〉, for 1 ≤ k ≤ n, is an optimal paging strategy that pages cells in
{Ci1 , . . . Cik} in the first ik rounds.

In light of Lemma 4, Algorithm 3 computes an optimal paging strategy for
the yellow page problem. A dedicated array Best[2N] is used in the algorithm.
Best[k] records the optimal sub-strategy of paging cells {Ci1 , . . . , Cil} where
i1, . . . , il are the bits of 1 after converting k into binary. In the first for loop,
we initialize the optimal paging strategy of a single cell given no user is found
in other cells which is to page the cell itself in the only around. For paging l
cells in l rounds, we search through all possible cases that page one of the l cells
in the first round, and page the other (l − 1) cells optimally in the remaining
(l− 1) rounds. The data structure Best is set up for random access any optimal
sub-strategy that has been already computed.

Similarly, we construct Algorithm 4 for the conference call problem. The only
difference with the yellow page algorithm is the recursive computation of the cost
according to (4).

Algorithm 3 D = N , arbitrary users: compute the optimal cost and strategy
for yellow page using dynamic programming; opt = YPDP(A)

for ∀A, that |A| = 1 do
Best[A]cost ← 1
Best[A]strategy ← 〈A〉

for ∀A that |A| = 2 . . . N do

Best[A]cost ← minCi∈A{1 +
∏M

m=1
∑

Cn∈A\Ci
pm,i∏M

m=1
∑

Cn∈A pm,i
· Best[A \ Ci]cost}

Best[A]strategy ← 〈arg min{Ci|Best[A \ Ci]cost}, Best[A \ Ci]strategy〉
return {Best[A]| that |A| = N}

Theorem 1. The time complexity of Algorithms 3 and 4 is Θ(MN · 2N). The
space complexity is Θ(N · 2N).

D=N, Disjoint users: For disjoint users we can reduce the running time
of optimal algorithm to O(NM) based on the following lemma. The algorithm
involved is outlined in Appendix B. We implement the algorithm and use it in
our simulation. It runs very fast for small M .

Algorithm 4 D = N , arbitrary users: compute the optimal cost and strategy
for conference call using dynamic programming; opt = CCDP(A)

for ∀A, that |A| = 1 do
Best[A]cost ←

∏M
m=1 Pm,A

Best[A]strategy ← 〈A〉
for ∀A that |A| = 2 . . . N do

Best[A]cost ← minCi∈A{Best[A \ Ci]cost +
(∏M

m=1 PA −
∏M

m=1 PA\Ci

)
· |A|}

Best[A]strategy ← 〈arg min{Best[A \ Ci]cost, Best[A \ Ci]strategy, Ci}〉
return {Best[A]| that |A| = N}

Lemma 6. For disjoint users, in an optimal strategy, for every user, the cells
where the user is located must be paged by order of non-increasing probability.

5 Experiments

We design a family of 12 heuristics that compute good paging strategies in
practice. All our heuristics are of the following form: First, we compute an order
of the cells (according to some greedy method) and then, we apply Algorithms 1
or 2 to find the best strategy that follows this order of the cells. We have four
criteria to order the cells. Define Xn =

∏M
m=1 pm,n (the probability all users

are in cell Cn). Define Yn =
∏M
m=1(1 − pm,n) (the probability no user is in cell

Cn). Define Sn =
∑M
m=1 pm,n (the sum of user probabilities being in cell Cn).

Define Zn = maxMm=1 pm,n (the maximum user probability in cell Cn). Heuristics
X, Y , S and Z page the cells in the orders X1 ≥ . . . ≥ XN , Y1 ≤ . . . ≤ YN ,
S1 ≥ . . . ≥ SN 3 and Z1 ≥ . . . ≥ ZN , respectively.

We use the above four basic heuristics to compute paging strategies for both
problems. For each basic greedy heuristic G ∈ {X,Y, Z, S}, we design two adap-
tive versions, namely BFG and WLG. In the Best First (BF) version, each time
we select a cell to form an order, we select the next available cell that has the
best value (maximum for X, S, Z and minimum for Y), and then normalize
the probabilities among unselected cells. In the Worst Last (WL) version, we
select the available cell that has the worst value (minimum for X, S, Z and
maximum for Y) as the last cell in the order, and then normalize probabilities
among unselected cells.

Select the Best Heuristics: We test our heuristics for both the yellow page
and the conference call problem. For each problem, we check regular users and

3 [BM2] showed Y is an e
e−1

-approximation for any D ≤ N .

disjoint users. We also conduct our simulation on small instances and large in-
stances with respect to number of cells. For small instances, we try all possible
inputs (exhaustive search) up to some granularity (values of probabilities are
integer multiples of some small value), then we compute strategies for Zipf and
Uniform distributed user location data. We check the cases of D = 2 and D = N
(for efficient optimal algorithms). We compare the paging costs between different
greedy heuristics and between greedy heuristics and OPT. For large instances,
we conduct simulation on Zipf and Uniform distributed data, for several values
of D, and then we compare the paging costs between the heuristics. We measure
the average and worst case ratio of costs between each pair of heuristics and
between each heuristic and OPT for the instances in each group of test with a
combination of parameters and for real data. We evaluate the performances of
heuristics by comparing among heuristics and comparing heuristics and optimal
algorithms. We use a kind of“voting system” to generate a ranking of heuristics.
We describe details of the setup and results of our experiments in Appendix C.

Our results show that the ranking of heuristics is the same for large and
small instances, when doing exhaustive search, for Zipf and uniform data, for
average case and worst case measurement, and when comparing heuristics among
themselves or when comparing heuristics with OPT. Table 1 shows the ranking
of heuristics and of the three versions of the best heuristic (Y , BFY , WLY) for
the two problems.

Table 1. Performance ranking of heuristics. G > H: heuristic G is consistently better
than H; G ≥ H: G is no worse than H (sometimes better, sometimes comparable);
G ∼ H: G is comparable to H.

Yellow Page Conference Call

Y ≥ S > Z ≥ X Y ≥ S > Z ≥ X
BFY > Y ≥WLY Y > BFY ∼WLY

Next we evaluate the performance of our best greedy heuristics. Our simula-
tion found some “bad” instances. Based on these instances, we are able to craft
some examples that show lower bounds on the competitiveness of our heuristics
for both problems. We elaborate in two cases in Appendix D.

Performances of Best Greedy Heuristics: We evaluate the performances
of the best heuristics (BFY for yellow page and Y for conference call) on small
instances, large instances. We measure their average case and worst case cost
ratios over OPT for small instances and real data. We measure the average and
worst case cost ratios of other heuristics over BFY or Y for large instances.

Tables 2(a), 2(c) and 2(d) show the results. We observe that our selected
heuristics perform well in the worst case and average performance for all types
of input data. We also present the results in bar chart in Fig. 4 in Appendix C.

Simulation on Real Data: We obtain from a cellular phone company 996
users’ 171929 appearances in 5625 cells in 31 consecutive days. For each user,
we extract (from the above real data) the number of appearances in every cell.
We randomly pick two (M = 2), three (M = 3), and four (M = 4) users and

compute the probabilities pm,ns. For each M = 2, 3, 4, we pick 10,000 instances
as above. We conduct the same simulations as in the non-real data. We observe
that each real user is close to Zipf distributed and users are almost disjoint. The
results coincide with the results from non-real data as shown in Tables. 1 and
2(b).

Table 2. Cost Ratios of BFY for Yellow Page (YP) and Y for Conference Call (CC)

(a) Cost Ratios Over OPT:
Small Instances

Problem Average Worst

YP (BFY) 1.00638 1.19415
CC (Y) 1.00173 1.03609

(b) Cost Ratios Over OPT:
Real Data

Problem Average Worst

YP (BFY) 1.03352 1.54384
CC (Y) 1.00643 1.05930

(c) Cost Ratios Over BFY :
Large Instances, YP

Heuristic Average Worst

BFX 1.19102 2.23126
BFZ 1.28360 2.51777
BFS 1.00003 1.00961

(d) Cost Ratios Over Y :
Large Instances, CC

Heuristic Average Worst

X 1.15884 1.62346
Z 1.00626 1.03000
S 1.00000 1.00316

Running Time: We compare the running time of our greedy heuristics and
efficient optimal algorithms. For accurate time measurement, for each N , we run
our algorithms for many iterations and compute the average running times.

For D = 2, we test the running time of the static version of the greedy heuris-
tics G (i.e., Y) of complexity Θ(MDN logN), the adaptive version of the greedy
heuristics AG (i.e., BFY and WLY) of complexity Θ(MDN2 logN), and the
DN optimal algorithm of complexity Θ(MNDN). The result is in Fig. 1(a) For
D = N , we test the running time of the static greedy heuristic G, the adaptive
greedy heuristic AG, and the fast optimal algorithm of complexity Θ(MN2N).
The result is in Fig. 1(b) In the two experiments, we observe a complexity hier-
archy of the algorithms and a tradeoff between complexity and optimality. For
D = N , we also compare the running time of the straight forward optimal N !
algorithm and fast 2N algorithm. The result is in Fig. 1(c). As expected, the N !
algorithm is super exponential and the 2N algorithm is comparably much faster,
which allows us do experiments on larger problem instances.

6 Open Problems

A natural generalization is to efficiently find k out of M users. In the yellow page
problem k = 1 and in the conference call problem k = M . The motivation for this
general case could be the task of finding a team of k doctors out of a pool of M
doctors. In this paper, we assume that the costs of paging cells are all the same.
However, they may vary from cell to cell due to different level of congestions.
Another generalization, is to compute good paging strategies when cells have
arbitrary paging costs. We have results for paging a single users while paging

multiple users with paging costs is work in progress. Finally, our paging strategies
are static since they are predetermined before the paging process starts. In a
dynamic setting, we may select the cells to be paged in the next round according
to the users found in previous rounds. The dynamic yellow page problem remains
the same while a solution to the dynamic conference call problem can outperform
the optimal solution for the static call conference problem. How to compute a
good dynamic paging strategy remains open.

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 4 6 8 10 12 14 16 18 20

R
u

n
n

in
g

 t
im

e
(i

n
 s

ec
o

n
d

s)

N

G
AG

OPT

(a) D = 2, heuristics and
optimal algorithm

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 4 6 8 10 12 14 16 18 20

R
u

n
n

in
g

 t
im

e
(i

n
 s

ec
o

n
d

s)

N

G
AG

OPT

(b) D = N , heuristics and
optimal algorithm

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 3 4 5 6 7 8

R
u

n
n

in
g

 t
im

e
(i

n
 s

ec
o

n
d

s)

N

N!
2

N

(c) D = N , two optimal
algorithms

Fig. 1. Running time

References

[AMHUW] Akyildiz, I. F., Mcnair, J., Ho, J., Uzunalioglu, H., Wang, W.: Mobility
management in next-generation wireless systems. Proc. IEEE. (1999) 1347–1384

[BFG] Bar-Noy, A., Feng, Y., Golin, M.J.: Paging mobile users efficiently and opti-
mally. In: Proc. IEEE Conference on Computer Communications. (2007) 1910–1918

[BM2] Bar-Noy, A., Malewicz, G.: Establishing wireless conference calls under delay
constraints. J. Algorithms 51(2) (2004) 145–169

[BN] Bar-Noy, A., Naor, Z.: Efficient multicast search under delay and bandwidth
constraints. Wireless Networks 12(6) (2006) 747–757

[B] Buchanan, M.: Ecological modelling: the mathematical mirror to animal nature.
Nature 453 (2008) 714–716

[CFK] Cohen, E., Fiat, A., Kaplan, H.: Efficient sequences of trials. Proceedings of
the ACM-SIAM symposium on Discrete algorithms (SODA) (2003) 737–746

[EL1] Epstein, L., Levin, A.: The conference call search problem in wireless networks.
Theor. Comput. Sci. 359(1-3) (2006) 418–429

[EL2] Epstein, L., Levin, A.: A PTAS for delay minimization in establishing wireless
conference calls. Discrete Optimization 5(1) (2008) 88–96

[GH] Gau, R.-H., Haas, Z. J.: Concurrent search of mobile users in cellular networks.
IEEE/ACM Trans. Netw. 12(1) (2004) 117–130

[GKS] Goodman, D.J., Krishnan, P., Sugla, B.: Minimizing queuing delays and number
of messages in mobile phone location. Mobile Netw. and Appl. 1(1) (1996) 39–48

[KKM] Kaplan, H., Kushilevitz, E., Mansour, Y.: Learning with attribute costs. Pro-
ceedings of ACM Symposium on Theory of Computing (STOC) (2005) 356–365

[KGWH] Krishnamachari, B., Gau, R.H., Wicker, S.B., Haas, Z.J.: Optimal sequential
paging in cellular wireless networks. Wireless Netw. 10(2) (2004) 121–131

[RY1] Rose, C., Yates, R.D.: Minimizing the average cost of paging under delay con-
straints. Wireless Netw. 1(2) (1995) 211–219

[RY2] Rose, C., Yates, R.D.: Ensemble polling strategies for increased paging capacity
in mobile communication networks. Wireless Netw. 3(2) (1997) 159–167

[W] Weitzman, M. L.: Optimal search for the best alternative. Econometrica 47(3)
(1979) 641–654

A Hierarchy of User Types

Arbitrary

a b 0 0 0
c 0 d 0 c
e f g 0 a

Similar

a b c 0
b a 0 c
0 a b c

Uniform

1/k . . . 1/k 0
1/h . . . 1/h 1/h

Disjoint

a b 0 0 0
0 0 e 0 0
0 0 0 f g

Identical

a b . . . c
a b . . . c
a b . . . c

Similar-Uniform

1/k . . . 1/k 0
1/k 0 . . . 1/k
1/k . . . 1/k 0

Similar-Disjoint

a b . . . 0 . . . 0
0 . . . 0 a b . . .

Uniform-Disjoint

1/k . . . 1/k 0 . . . 0
0 . . . 0 1/l . . . 1/l

Identical-Uniform

1/k 1/k . . . 1/k
1/k 1/k . . . 1/k

Similar-Uniform-Disjoint

1/k . . . 1/k 0 . . . 0
0 . . . 0 1/k . . . 1/k

Fig. 2. Hierarchy among Different User Types; a, b, c, d, e, g, h ≤ 1 are positive real
numbers, h, k, l ≤ N are positive integers.

B Proof of Lemmas in Sec. 4

Proof (of Lemma 2). In the yellow page problem, denote the per-cell probability
suffix with rm,n =

∑N
i=n+1 pm,i. Assume for the sake of contradiction, that in

the optimal paging strategy O, there are two cells, Ci, Cj , for which Ci ∈ Od
and Cj ∈ Od+1, but pm,i < pm,j . Using equation (5), the paging cost of O is:

YP(O) = cost before round d+ Sd ·

(
M∏
m=1

rm,Sd−1 −
M∏
m=1

rm,Sd

)
+

Sd+1 ·

(
M∏
m=1

rm,Sd
−

M∏
m=1

rm,Sd+1

)
+ cost after round (d+ 1). (7)

Consider the strategy O′ where we switch the round assignments of cells Ci
and Cj . Then,

YP(O′) = cost before round d+ Sd ·

(
M∏
m=1

rm,Sd−1 −
M∏
m=1

r′m,Sd

)
+

Sd+1 ·

(
M∏
m=1

r′m,Sd
−

M∏
m=1

rm,Sd+1

)
+ cost after round (d+ 1). (8)

Besides identical terms, for every m, r′m,Sd
contains pm,i whereas rm,Sd

con-
tains pm,j , i.e., r′m,Sd

−rm,Sd
= pm,i−pm,j , which implies r′m,Sd

< rm,Sd
, because

pm,i < pm,j . Subtracting (8) from (7), we get

YP(O)−YP(O′) = (Sd − Sd+1) ·

(
M∏
m=1

r′m,Sd
−

M∏
m=1

rm,Sd

)
> 0

because both factors are negative. This is a contradiction to the optimality of
O.

Similarly, we can prove the lemma for the conference call problem (proof
omitted).

Proof (of Lemma 3). From (2), we have (the summation is over all possible
location vectors d = (d1, . . . , dM) ∈ {1, . . . , N}M):

CC(A, qm,n) =
∑
d

(
M

max
m=1

dm ·
M∏
m=1

qm,dm

)

=
∑
d

(
(N + 1−

M
min
m=1

(N + 1− dm)) ·
M∏
m=1

pm,N+1−dm

)

=
∑
d

(
(N + 1) ·

M∏
m=1

pm,N+1−dm

)
−
∑
d

(
M

min
m=1

(N + 1− dm) ·
M∏
m=1

pm,N+1−dm

)

= N + 1−
∑
d′

(
M

min
m=1

d′m ·
M∏
m=1

pm,d′m

)
= N + 1−YP(A, pm,n)

where d′m = N + 1− dm and d′ = (d′1, . . . , d
′
m), because the mapping dm 7→ d′m

is a bijection in {1, . . . , N}, after using equation (1).

Proof (of Lemma. 4). Assume for contradiction that, 〈Cjk , . . . Cjn〉 (6= 〈Cik , . . . Cin〉)
is the optimal paging strategy for the suffix, then

YP(〈Cjk , . . . Cjn〉) < YP 〈Cik , . . . Cin〉 .

Using equation (3),

YP(
〈
Ci1 , . . . , Cik−1 , Cjk , . . . , CjN

〉
) < Y P (

〈
Ci1 , . . . , Cik−1 , Cik , . . . , CiN

〉
) ,

which is a contradiction to the optimality of
〈
Ci1 , . . . , Cik−1 , Cik , . . . , CiN

〉
.

Best[{1}]

Best[{2}]

Best[{3}]

Best[{4}]

Best[{1, 2}]

Best[{1, 3}]

Best[{1, 4}]

Best[{2, 3}]

Best[{2, 4}]

Best[{3, 4}]

Best[{1, 2, 3}]

Best[{1, 2, 4}]

Best[{1, 3, 4}]

Best[{2, 3, 4}]

Best[{1, 2, 3, 4}]

Fig. 3. Illustration of Algorithm 3 for D = N = 4.

Proof (of Theorem 1). : Fig. 3 demonstrates an example of running process of
Algorithm 3. We note that there are Θ(2N) nodes, for general N , in the above
figure. To compute each node, on average, one need to randomly access dN/2e+1
nodes from the previous column. Each random access can be executed in Θ(M)
time after some linear time preprocessing. The overall time complexity of the
algorithm is Θ(MN · 2N).

To randomly access from one column to the previous column, we need to
maintain at least

(
N
bN/2c

)
+
(

N
bN/2c+1

)
nodes in the memory, and the average size

of a node is dN/2e + 1. Thus, the overall space complexity of the algorithm is
Θ(N · 2N).

Proof (of Lemma 6). (Sketch) By contradiction. Without loss of generality, sup-
pose in the optimal paging strategy O, for user 1, cell Ci is paged in dith round
and Cj is paged in djth round, with di < dj , but p1,i < p1,j . By swapping Ci
and Cj , we obtain another paging strategy, O′. We have

YP(O) = terms group 1 + p1,i · di · (terms group 2) + p1,j · dj · (terms group 3)
YP(O′) = terms group 1 + p1,j · di · (terms group 2) + p1,i · dj · (terms group 3)

We observe that p1,idi + p1,jdj > p1,jdi + p1,idj . Thus YP(O) > YP(O′), which
is a contradiction to O’s optimality. (A similar proof can be applied to the
conference call problem.)

Optimal algorithm [for disjoint users]: We show the algorithm for M = 2
users in the yellow page problem. It can be extended to any number of users. The
algorithm also works with slight modifications for the conference call problem.

Let two users roam in (k+l) cells. User 1 only appears in the first k cells with
probabilities p1, . . . , pk and user 2 only appears in the other l cells with probabili-
ties q1, . . . , ql. Without loss of generality, we assume p1 ≥ · · · ≥ pk and q1 ≥ · · · ≥
ql. Define matrix Bestk×l such that Best[i, j] is the best paging strategy within
cells with probabilities pi, . . . , pk, qj , . . . , ql given the condition that no user is
located in the other (i+j−2) cells. By defining pk+1 = ql+1 = 0, we observe that

Best[k + 1, l + 1]cost = 0, Best[k + 1, j]cost = 1 +
∑l

t=j+1 qt∑l
t=j qt

Best[k + 1, j + 1]cost

for 1 ≤ j ≤ l, and Best[i, l + 1]cost = 1 +
∑k

t=i+1 pt∑k
t=i pt

Best[i+ 1, l + 1]cost for
1 ≤ i ≤ k. We recursively compute other entries in Best, according to Lemma 6:

Best[i, j]cost = min

{
1 + pi+1+···+pk

pi+···+pk
Best[i+ 1, j]cost

1 + qj+1+···+ql

qj+···+ql
Best[i, j + 1]cost

(9)

Best[1, 1] is the optimal paging strategy for all cells.
For M > 2 users, a similar algorithm can be designed by using an M -

dimensional Best array. The size of data structure Best is O(NM). Computing
an entry of Best, takes Poly(M,N) time. The overall complexity of the algorithm
is Θ(NMPoly(M,N)), which is polynomial with respect to the number of cells.

C Experiment Details

Algorithms structure: Input: Probability matrix PM×N , delay constraint D.
Output: Paging cost and paging strategy array part[N], where part[n] is the
part index of cell Cn.

Algorithms implemented: 1) OPT: A simple optimal algorithm for arbi-
trary users on any D: It tests all assignments of cells 〈C1, . . . , CN 〉 to parts
〈A1, . . . , AD〉 and selects the best. The complexity is Θ(MN ·DN). For D = 2,
its complexity is Θ(MN · 2N). 2) FAST OPT: Algorithms 3 and 4. Optimal
algorithms for arbitrary users when D = N . Their complexity is Θ(MN · 2N).
3) DISJOINT OPT: Optimal algorithm for disjoint users when D = N . 4) All 12
greedy heuristics for 1 ≤ D ≤ N . Their general complexity is O(MD ·N4). When
D = N their complexity becomes Θ(MN2). The static version of heuristics has
complexity Θ(MDN2) when D < N .

User Types: 1) Regular users: directly generate pm,ns according to data type.
2) Disjoint users: select non-zero entries pm,ns for each user such that all users
have (almost) same number of non-zero pm,ns, then generate pm,n values within
non-zero entries of each user.

Instance scale: 1) Small instances: For Zipf and random user location data,
we select M = 2, 3, 4, 5 and N = 10, 12, 14, 16, D = 2 and D = N . 2) Large

instances: For Zipf and random user location data, we select M = 2, 3, 4, 5 and
N = 10, 20, . . . , 100, D = 2, 4, 8, . . . , 2blog2Nc.

Data type: 1) EXT: Exhaustive search on small instances: for each set of param-
eters {M,N} and granularity K, we enumerate all possible pm,ns in increment
of 1/k, where 2 ≤ k ≤ K. The number of instances is Θ((K2)MN). We choose
N = 3, 4, 5, 6, M = 2 and K = 13 so that the experiments can be completed
in a reasonable time frame (hours to days). 2) RANDOM: Random data: for
each set of parameters {M,N}, we generate 1000 instances of random data,
such that pm,n ∼ U(0, 1). We normalize pm,ns such that

∑N
n=1 pm,n = 1 for

1 ≤ m ≤ M . 3) ZIPF: Zipf data: Empirical study [B] on user location distri-
bution shows that pm,n follows Zipf distribution, i.e., pm,i = i−α/

∑N
n=1 n

−α.
Zipf distribution is a power-law distribution and α ≥ 0 is its parameter. When
α = 0, Zipf distribution is uniform. As α grows, it becomes more uneven. Us-
ing the method of least squares on real data, we acquire the following estimate
of the parameter α = 0.4429. We generate Zipf data pm,ns for each user m,
and randomly shuffle for each user (otherwise we would just create monotonic
users). For each set of parameters {N,M,α}, we generate 1000 instances. We
select α = 0.25, 0.4429, 0.5, 0.75, 1.0.

Variation: We set up a group of instances for each combination of the following
seven criteria:

– Problem: yellow page versus conference call
– User type: regular users versus disjoint users
– Instance scale: large versus small
– Data: EXT versus RANDOM versus ZIPF
– Delay constraint: D = 2 versus D = N for small instances only
– Measurement: worst case (lower bound) versus average ratios
– Evaluation criteria: between heuristics versus between heuristic and OPT

(to be explained next).

Example of a group of tests: For the yellow page problem, we create 1,000
small random instances (N = 10, 12, 14, 16, M = 2, 3, 4, 5) of regular users with
probabilities that follow Zipf distribution. We measure the average cost ratios
between each pairs of heuristics.

Measurements: 1) For each instance in each group of data, we measure the cost
ratio of one heuristic over another heuristic, as well as each heuristic over OPT.
We have 12×12 such ratios for each instance (12×11 between pairs of heuristics
and 12 between all heuristics and OPT). 2) For each group of instances, we
measure the worst case and average case of ratios.

Evaluation Criteria: 1) Between heuristics: Let G and H be two greedy heuris-
tics. Let ρG/H be the cost ratio of G over H on a group of instances; let ρH/G
be the ratio of H over G on the same group of instances. Define the competitive
factors εG/H = ρG/H − 1 and εH/G = ρH/G − 1. Let µ ∈ [2, 4] be a constant that

 0

 0.5

 1

 1.5

 2

 2.5

 3

BFSBFZBFYBFX

C
o
st

 R
at

io
 O

v
er

 O
P

T

Heuristics

Average
Worst

(a) Cost Ratios Over OPT: Small In-
stances, YP

 0

 0.5

 1

 1.5

 2

SZYX

C
o
st

 R
at

io
 O

v
er

 O
P

T

Heuristics

Average
Worst

(b) Cost Ratios Over OPT: Small In-
stances, CC

 0

 0.5

 1

 1.5

 2

 2.5

 3

BFSBFZBFYBFX

C
o
st

 R
at

io
 O

v
er

 B
F

Y

Heuristics

Average
Worst

(c) Cost Ratios Over BFY : Large In-
stances, YP

 0

 0.5

 1

 1.5

 2

SZYX

C
o
st

 R
at

io
 O

v
er

 Y

Heuristics

Average
Worst

(d) Cost Ratios Over Y : Large In-
stances, CC

 0

 1

 2

 3

 4

 5

 6

 7

 8

BFSBFZBFYBFX

C
o
st

 R
at

io
 O

v
er

 O
P

T

Heuristics

Average
Worst

(e) Cost Ratios Over OPT: Real Data,
YP

 0

 0.5

 1

 1.5

 2

 2.5

 3

SZYX

C
o
st

 R
at

io
 O

v
er

 O
P

T

Heuristics

Average
Worst

(f) Cost Ratios Over OPT: Real Data,
CC

Fig. 4. Cost Ratios of Greedy Heuristics

we will choose and that will be used to distinguish performances of different al-
gorithms. If εG/H and εH/G are of same sign and 1/µ ≤ εG/H/εH/G ≤ µ, we say
heuristics G and H have comparable performance. Otherwise, if εG/H < εH/G ,
we say G outperforms H. 2) Between a heuristic and optimal: Let G be a heuris-
tic. Let ρG ≥ 1 be the cost ratio of G over OPT. Define competitive factor
εG = ρG − 1. For any heuristics G and H, we say their performances are compa-
rable if 1/µ ≤ εG/εH ≤ µ; otherwise, we say G outperforms H if εG/εH < 1/µ.
3) µ = 2, 3, 4.

We observe that the two evaluation criteria above coincide very well in our
experiments. The disagreement rate varies from 2.78% to 26.7%, with a mean of
9.37%. Varying µ from 2 to 4 does not remarkably affect results.

Statistics Collection: For each group of instances, we create a 12×12 table that
records the superiority of one heuristic over another and OPT for each variation
of tests. Each table entry can be of three values, −1, 0 and 1 denoting the row
heuristic is worse, comparable or better than the column heuristic, respectively.
The value is determined by both evaluation criteria.

We measure the superiority among four groups of heuristics: X, Y , Z and
S in their corresponding versions (e.g., WLX, WLX, WLZ and WLS), and
among the three versions within each group (e.g., Y , BFY and WLY).

We conduct a voting on the corresponding table entries of one heuristic over
another. If heuristic G has a 2/3 majority of superiority over H, we denote this
by G ≥ H. If heuristic G has a 100% majority of superiority over H, we denote
this by G > H. Otherwise, we say G ∼ H

Results: We first observe that a few factors do not affect the performance of
heuristics; these are: delay constraint: D = 2 or D = N ; Data type: EXT,
RANDOM OR ZIPF; Measurement: average or worst case; Evaluation criteria:
between heuristics or between a heuristic and OPT.

A summary of the results is shown in Table 1 in the main paper.
Besides Table 1, we observe a few facts: 1) All heuristics perform quite well,

on average with ratios of less than 1.15 competitive to OPT. In the worst case
ratios, only heuristics X, BFX and WLX perform badly with a lower bound
ratio of N − 1 for the yellow page problem and (N + 1)/2 for the conference
call problem. All other worst case ratios are less than 2. For the conference call
problem we record better cost ratios than for the yellow page problem because
the latter has smaller value in paging cost for the same instance. 2) The average
case and worst case performance of heuristics coincides with each other, which
suggests that their performance is consistent and stable.

D Some Examples: Lower Bounds of Greedy Heuristics

Case 1: D = N and M = 1. The probability matrix:(
1− (N − 2)ε 0 ε . . . ε

0 1− (N − 2)ε ε . . . ε

)

Lemma 7. In Case 1, YP(X)/YP(OPT) = N − 1, CC(X)/CC(OPT) = N/2,
when ε→ 0+.

Proof. (sketch) Let ε→ 0+. The paging strategy generated byX is 〈C3, . . . , CN , C1, C2〉
while the optimal paging strategy is 〈C1, C2, C3, . . . , CN 〉.

YP(X) = N − 1 CC(X) = N

YP(OPT) = 1 CC(OPT) = 2

By applying the above equations we have Lemma 7.

Case 2: D = N and M = m+ 1. The probability matrix:
0 . . . 0 km−(k−1)m

km . . . k
m−(k−1)m

km y

m

{ 1/k . . . 1/k 0 . . . 0 0

.
...

1/k . . . 1/k 0 . . . 0 0︸ ︷︷ ︸
k terms

︸ ︷︷ ︸
x terms

Lemma 8. In Case 2, YP(BFY)/YP(OPT) ≥ 2− ε.

Proof. (Sketch) Since

1−
m∏
i=1

(1− 1/k) =
km − (k − 1)m

km
,

an adversary can force BFY select cell C1 in the first round by adding small
turbulence. Consequently, BFY will sequentially select cells C2, . . . , Ck in later
rounds. OPT will page the last (x + 1) cells in sequentially. We compute the
following steps by induction (details omitted).

YP(BFY) =
∑k
i=1 i

m

km

YP(BFY) ≥ k

m+ 1

YP(OPT) ≤ k

2m
+O(1)

Fixing m and let k →∞, we have

YP(BFY)
YP(OPT)

≥
k

m+1
k

2m +O(1)
≈ k

k +O(m)
· 2m
m+ 1

.

Make m→∞ and force k � m,

YP(BFY)
YP(OPT)

≥ 2m
m+ 1

= 2− ε .

E Acknowledgement

The work of Amotz Bar-Noy and Yi Feng was partially sponsored by the Army
Research Laboratory and was accomplished under Cooperative Agreement Num-
ber W911NF-09-2-0053. The views and conclusions contained in this document
are those of the authors and should not be interpreted as representing the of-
ficial policies, either expressed or implied, of the Army Research Laboratory
or the U.S. Government. The U.S. Government is authorized to reproduce and
distribute reprints for Government purposes notwithstanding any copyright no-
tation here on.

