
Finding Mobile Data under Delay Constraints with Searching Costs ∗

Amotz Bar-Noy1, Panagiotis Cheilaris2, Yi Feng1, and Asaf Levin3

1Department of Computer Science, The City University of New York
2Center for Advanced Studies in Mathematics, Ben Gurion University

3Industrial Engineering and Management, Technion, Israel Institute of Technology

Abstract

A token is hidden in one of several boxes and then the boxes are locked. The probability
of placing the token in each of the boxes is known. A searcher is looking for the token by
unlocking boxes where each box is associated with an unlocking cost. The searcher conducts
its search in rounds and must find the token in a predetermined number of rounds. In each
round, the searcher may unlock any set of locked boxes concurrently. The optimization goal is
to minimize the expected cost of unlocking boxes until the token is found. The motivation and
main application of this game is the task of paging a mobile user (token) who is roaming in a zone
of cells (boxes) in a Cellular Network system. Here, the unlocking costs reflect cell congestions
and the placing probabilities represent the likelihood of the user residing in particular cells.
Another application is the task of finding some data (token) that may be known to one of the
sensors (boxes) of a Sensor Network. Here, the unlocking costs reflect the energy consumption
of querying sensors and the placing probabilities represent the likelihood of the data being found
in particular sensors. In general, we call mobile data any entity that has to be searched for.

The special case, in which all the boxes have equal unlocking costs has been well studied in
recent years and several optimal polynomial time solutions exist. To the best of our knowledge,
this paper is the first to study the general problem in which each box may be associated with a
different unlocking cost. We first present three special interesting and important cases for which
optimal polynomial time algorithms exist: (i) There is no a priori knowledge about the location
of the token and therefore all the placing probabilities are the same. (ii) There are no delay
constraints so in each round only one box is unlocked. (iii) The token is atypical in the sense
that it is more likely to be placed in boxes whose unlocking cost is low. Next, we consider the
case of a typical token for which the unlocking cost of any box is proportional to the probability
of placing the token in this box. We show that computing the optimal strategy is strongly
NP-Hard for any number of unlocking rounds, we provide a PTAS algorithm, and analyze a
greedy solution. We propose a natural dynamic programming heuristic that unlocks the boxes
in a non-increasing order of the ratio probability over cost. For two rounds, we prove that this

strategy is an 8/7 ≈ 1.143-approximation solution for an arbitrary token and a 7−2
√
7

28−10
√
7
≈ 1.108-

approximation for a typical token and that both bounds are tight. For an arbitrary token, we
provide a more complicated PTAS which is polynomial in the size of the smallest probability and
weight of a box. In the context of cellular networks, we test our algorithms on random data (that
either follows the Zipf distribution or the uniform distribution) and on “real” data that includes
171929 appearances of 996 users in 5625 cells. The results indicate that our simple greedy
algorithms perform remarkably better in practice than their guaranteed theoretical bounds.

Paper to be considered for the student award (Yi Feng)

∗The work of the first and third authors was partially sponsored by the Army Research Laboratory and was
accomplished under Cooperative Agreement Number W911NF-09-2-0053.

1 Introduction

Consider the following combinatorial game. A token is hidden in one out of N boxes following
some probability distribution. The boxes are then locked and the only known information about
the location of the token is the probability distribution. Each box is associated with an unlocking
cost. A searcher needs to find the token as fast as possible by unlocking boxes while minimizing
the expected unlocking cost. The searcher is given D rounds, where 1 ≤ D ≤ N , to find the token
where in each round the searcher may unlock any set of locked boxes.

Let the boxes be C1, . . . , CN , let w1, . . . , wN be the unlocking costs, and let p1, . . . , pN be the
placing probabilities: with probability pi the token is placed in box Ci and all the probabilities are
independent. The fastest but the most expensive search strategy would unlock all the N boxes in
one round, (a blanket search). The other extreme is to unlock one box per round terminating once
the token is found (a sequential search). In general, a search strategy for D rounds is an ordered
D-partition A = 〈A1, . . . , AD〉 of the boxes, such that in the ith round, all the boxes in the set Ai
are unlocked if the token was not found during the previous (i − 1) rounds. The search process
terminates in round d if the token is found in one of the boxes of the set Ad. Then the cost for the
searcher is the total cost of unlocking all the boxes from the sets A1, . . . , Ad.

The ultimate goal is to minimize both the number of rounds and the expected unlocking cost until
the token is found. These are the two main criteria in evaluating the efficiency of a specific search
strategy. The problem studied in this paper is a common way to attack bi-criteria optimization
problems by constraining one criterion and optimizing the other: Given the delay constraint of
finding the token in at most D search rounds, design a search strategy with minimum expected
unlocking cost.

Example: Let N = 3, the placing probabilities be 0.5, 0.2, 0.3, and the unlocking costs be 0.1,
0.2, 0.7 for boxes C1, C2, C3, respectively. The cost of unlocking all the boxes in one round is
1. Suppose now that the token must be found in D = 2 rounds. One possible search strategy
is 〈{C1}, {C2, C3}〉. For this strategy, with probability 0.5 the token is found in C1 for a cost of
0.1. Otherwise, with probability (0.2 + 0.3) all the boxes are unlocked for a cost of 1. Thus, the
total expected cost is 0.5 · 0.1 + 0.5 · 1 = 0.55. Another possible search strategy is 〈{C1, C2}, {C3}〉.
For this strategy, with probability (0.5 + 0.2) the token is found in the first round for a cost of
(0.1 + 0.2). Otherwise, with probability 0.3, all the boxes are unlocked for a cost of 1. Thus, the
total expected cost is 0.7 · 0.3 + 0.3 · 1 = 0.51. The above two search strategies follow the non-
increasing order pi/wi. The expected cost of the search strategy 〈{C2}, {C1, C3}〉 that “violates”
this order is 0.2 · 0.2 + (0.5 + 0.3) · 1 = 0.84. Finally, it is not hard to see that with three rounds
the best strategy is to unlock the boxes following the order C1, C2, C3. With probability 0.5, only
C1 is unlocked for a cost of 0.1, with probability 0.2, both C1 and C2 are unlocked for the cost of
(0.1 + 0.2), and with probability 0.3, all boxes are unlocked for the cost of 1. The total expected
cost is therefore 0.5 ·0.1 + 0.2 · (0.1 + 0.2) + 0.3 ·1 = 0.41 which is the best possible for this example.

Motivation: The main application to the above game is the task of paging a mobile user (token)
that is roaming among the cells (boxes) of a cellular network (e.g., [15]). When a call to a user
arrives, the system must locate the exact cell in which the user resides to establish a connection. If
the user reports its new location whenever it crosses boundaries of cells, then the system “knows” its
exact location at any time and the task of finding this user becomes trivial. Since cellular networks
are expected to have many cells (mini-cells or micro-cells) and mobile users are expected to move
very fast, the user might cross boundaries of cells very frequently. This would make it infeasible
for the user to report its new location each time it enters a different cell because the reporting

1

process consumes the “expensive” resources: time, energy, and uplink bandwidth. Indeed, many
existing location management schemes instruct mobile users to report less often. A common location
management framework partitions the cells into location areas (zones), each with possibly many
cells. A user reports its new location to the system only when it crosses zone boundaries (e.g., [23]).
When a call to a user arrives, the system may page some or all the N cells (boxes) in some zone to
find the user. Although the choice of a location management scheme to minimize the overall use
of system resources depends on many parameters, such a paging step is common to most of the
schemes. Frequently, the system is looking for a mobile user without knowing the exact location of
this user. However, in many cases, some a priori knowledge about the whereabouts of the user is
known. This knowledge can be modeled with N probability values, one value associated with each
of the N cells: with probability pi the mobile user resides in cell Ci and all the probabilities are
independent. This a priori knowledge could either be supplied by the user itself, be extracted from
history logs maintained by the system, be based on recent reports and calls involving this user, or
be based on some mobility patterns. A paramount task in any location management scheme is to
design, analyze, implement, and evaluate efficient paging (search) strategies for a mobile user while
taking advantage of any partial knowledge of its whereabouts. The optimization goals are to find
the user as fast as possible while “paying” as little as possible for paging the cells.

A special case of this problem in which wi = 1 for all i ∈ {1, . . . , N} has been studied thoroughly.
This special case corresponds to searching for a mobile user in D rounds while minimizing the
expected number of cells paged. Efficient polynomial time dynamic programming solutions are
known for this case. The scope of this paper is the general case for which the paging costs are not
the same for all cells. This mainly reflects the fact that cellular networks are highly correlated with
user density and cell congestion. As a result, paging a cell with more users could be more expensive
than paging a cell with less users. In addition, there are a lot of other factors affecting the cost of
paging a cell, which include the maintenance cost of the base stations, the different regulations on
radiation emission, etc.

Mobile Data: The scope of this paper is very general. Let mobile data be an abstraction of any
entity in a network whose exact location is not known to the system at the time when a specific
query is looking for this data. Instead, the system knows that the mobile data may be found in
one out of N locations. The system has a profile for the data which is represented as a vector of
probabilities: with probability pi the data is in location Ci and all the probabilities are independent.
Whenever the system queries location Ci to see if it has the data it pays a cost of wi. Paging mobile
users in cellular networks is one application to this general setting but there are more applications.
Consider a wireless sensor network that accumulates some information (e.g., weather or traffic).
Mobile data may be any information that can be found in this sensor network. In order to save
battery energy, the sensors do not push the information but only reply to queries. As a result, the
system needs to pull the data by probing the sensors. The above framework models the pull task
where the objectives are to minimize the time it takes to get the data and to minimize the expected
cost incurred by the sensors that are probed. The above two applications are for wireless networks,
but one could think of similar applications in any kind of network, for example, the task of looking
for some data in the Internet or in a peer-to-peer network.

Prior art and related work: The general framework of mobile user location management has
been studied a lot in the past fifteen years; see the survey [1]. Modeling uncertainty of locations of
mobiles as a probability distribution vector was first studied in [20,22]. The paper [21] introduced
the user profile based paging scheme, under which the problem solved in this paper is discussed.
The papers [3, 15, 16, 18, 21] described optimal solutions based on dynamic programming when all

2

cells are of equal cost. The papers [16,21] studied how to minimize the expected number of paged
cells given an average (as opposed to worst-case) delay constraint using relaxation to a continuous
model [21] or with a weakly polynomial dynamic programming solution [16]. The problem of paging
more than one user for a conference call was studied in [5,7,12–14]. The problem of online paging
a mobile user (in contrast to predetermined offline paging) was studied in [6]. The paper [10]
explored a similar problem in which the order of cells is dictated in the context of TTL flood
searching in sensor networks. The problem of paging mobile users with inaccurate information of
the user location probabilities was studied in [4].

Contributions: To the best of our knowledge, this generalized version of the problem, i.e., wi
being an arbitrary number for each Ci, was not studied prior to our work. Indeed, the algorithms
that generate optimal search strategies when wi = 1 may have very bad performance because they
ignore the different costs. Thus, our goal is to explore different solutions and approaches for the
general case of arbitrary cost values.

We start with three interesting and important special cases for which polynomial time algorithms
that produce optimal search strategies exist. In the first, the searcher has no a priori knowledge
about the location of the token, so it assumes that all the probabilities are the same. We show
that this case is “dual” to the traditional case in which all the costs are the same. Therefore, the
known optimal dynamic programming solutions can be applied to this case as well. In the second,
there are no delay constraints and the searcher may search the token in N rounds. We show that
ordering the boxes by a non-increasing order of the ratio pi/wi implies an optimal sequential search.
In the third, the token is atypical in the sense that it is more likely to be placed in boxes with low
unlocking costs. We show that applying the known dynamic programming solutions on the boxes
ordered by the non-increasing order of the ratio pi/wi yields an optimal search strategy. We denote
this algorithm by FRO (Follow Ratio Order).

Next, we consider the case of a token that has a higher probability of being placed in “expensive”
boxes (in cellular networks, this corresponds to a mobile user who follows the massive behavior
of other users). Let a typical token be a token for which pi is proportional to wi. We show that
for a typical token the problem has a relatively simple Polynomial Time Approximation Scheme
(PTAS). This is best possible because we also show that the problem is strongly NP-hard already
for D = 2 and therefore a Fully PTAS (FPTAS) is impossible. We also show that the problem for
a typical token is similar to a known version of the load balancing problem. As a result, we analyze
the natural greedy solution borrowed from the load balancing problem and show similar results to
those that were known for the load balancing problem.

Next we address the case of D = 2 rounds. For an arbitrary token that may be placed in any
box with any probability, we show that the FRO strategy has a tight guaranteed 8/7 ≈ 1.143
approximation ratio. For a typical token, we design another solution that implies a slightly better

tight guaranteed 7−2
√
7

28−10
√
7
≈ 1.108 approximation ratio. We also provide a PTAS for the general

case, which is however more complicated than the PTAS given for typical tokens. The PTAS can
be modified to work for an arbitrary constant number of rounds and is polynomial in the minimum
probability and weight occuring in a box.

We complement our theoretical results with simulations for cellular networks, given in the ap-
pendix. First, we analyze real data from Shenzhen, China, provided by China Unicom that includes
171929 appearances of 996 users in 5625 cells. We show, by cross validation, that the cost vector
(determined by the congestion) and the users’ probability vectors (determined by frequencies of
appearances in cells) follow the Zipf distribution. We mainly explore the cases for which we do not

3

have concrete theoretical results. We cover the ranges of D between 2 and N and types of users
between typical and atypical users. We implement the FRO algorithm and an adaptation of the
greedy load balancing algorithm denoted by S [9]. We compare these polynomial time algorithms
with the optimal exponential time solution for small values of N and with the sequential optimal
strategy for larger values of N . We test the algorithms on random data (that either follows the
Zipf distribution or the uniform distribution) and real data. We report that for all values of D
and for all types of users, FRO performs well and that the theoretical bound 8/7 is a pessimistic
bound. On the other hand, S performs competitively only for typical or almost typical users since
it “ignores” the paging costs.

Paper organization: In most of the paper we will use the token-boxes terminology. We will use
the users-cells terminology to describe our simulations. In section 2 we provide formal definitions
and some preliminaries. In section 3 we present three cases for which optimal polynomial time
algorithms exist. In section 4 we study the case of typical tokens. In Section 5 we analyze the
performance of FRO for two rounds and describe the PTAS for the general case; some of the
relevant technical proofs appear in Appendices A and B. In section 6 we conclude with some open
problems. In appendix C we report the results of the simulation work on real data and simulated
data.

2 Preliminaries

Denote the N boxes by C1, C2, . . . , CN . Let p = 〈p1, p2, . . . , pN 〉 be the vector of independent
probabilities of the token being placed in these boxes respectively. Let w = 〈w1, w2, . . . , wN 〉 be
the vector of costs of unlocking these boxes respectively. Denote the delay constraint for finding
the token by D, 1 ≤ D ≤ N . An instance to the problem is the quadruple I = (N,D,w,p). An
instance I is a uniform cost instance if w1 = · · · = wN = 1/N and a uniform probability instance if
p1 = · · · = pN = 1/N .

A search strategy A = 〈A1, . . . , AD〉 is an ordered D-partition of the boxes, such that in the ith
round, all the boxes in the set Ai are unlocked. The search process terminates in round d if the
token is found in one of the boxes of the set Ad. For a given search strategy A and a round
1 ≤ d ≤ D, the round probability is Pd =

∑
Ci∈Ad

pi and the round cost is Wd =
∑

Ci∈Ad
wi. The

cost of search strategy A on an instance I = (N,D,w,p) is denoted by cost(A, I) and when the
definition of I is clear it is denoted by cost(A).
Proposition 1. The following are two different but equivalent ways to compute the search cost of
a search strategy A = 〈A1, . . . , AD〉 on the instance I = (N,D,w,p):

cost(A, I) =
∑D

d=1

(
Pd
∑d

i=1Wi

)
cost(A, I) =

∑D
d=1

(
Wd
∑D

i=d Pi

)
(1)

Proof. The first equation follows since with probability Pd the token is found during the dth round
and the strategy pays the cost of the first d sets A1, . . . , Ad of the partition. The second equation
follows since the strategy pays the cost of the dth round only if the token is in a box belonging to
the last (D − d+ 1) sets Ad, . . . , AD of the partition. 2

An optimal search strategy is a search strategy O such that cost(O) is the minimum among all
possible search strategies. An optimal algorithm is an algorithm that generates optimal search
strategies for all possible instances. Let OPT be an optimal algorithm and let algorithm ALG be
another search algorithm. ALG is a (1 + ε)-approximation, if cost(ALG)/cost(OPT) ≤ (1 + ε) for
any instance.

4

Normalizing the cost and the probability vectors: We observe the following basic fact that
allows us to assume without loss of generality that

∑N
i=1wi = 1 and that

∑N
i=1 pi = 1.

Proposition 2. Let O be an optimal search strategy on boxes with probabilities pi and costs wi,
1 ≤ i ≤ N . O is also an optimal search strategy on boxes with probabilities p′i and costs w′i,
if w′i = cw · wi and p′i = cp · pi, where 1 ≤ i ≤ N and cw and cp are positive constants. The
approximation ratio of any non-optimal solution is retained, too.

Types of tokens: We classify tokens by their typicality. In one extreme, the probability vector of
a typical token is proportional to its cost vector. By Proposition 2, without loss of generality, for
a typical token, pi = wi for any box Ci. In the other extreme, an atypical token is more likely to
be located in lower cost boxes. Formally, the costs and the probabilities are in opposite order. A
token with no typicality association is called an arbitrary token. Such a token may be located in
any box Ci with arbitrary cost wi and arbitrary probability pi.

Optimal polynomial time algorithms: We say that an ordered partition A = 〈A1, . . . , AD〉
respects the order of boxes 〈C1, C2, . . . , CN 〉 if there are no Ai, Aj with i < j, such that Ci′ ∈ Ai
and Cj′ ∈ Aj with i′ > j′. Given an order of the boxes, one can find a minimum cost partition that
respects that order in polynomial time by slightly modifying the dynamic programming methods
described in [3,15,16,18,21] to include costs of boxes. A naive implementation implies an O(N2D)
algorithm. We next show a more efficiently implementation. Proof is omitted.
Theorem 1. The dynamic programming scheme from [3] can be implemented in Θ(ND) time to
find a minimum cost partition that respects a given order on the boxes.

Unfortunately, for the general problem, as we will prove later, it is impossible to find in polynomial
time the order of boxes in an optimal search strategy unless P = NP.

Algorithm FRO: Consider the N boxes ordered by the non-increasing order of the pi/wi ratio.
That is, p1/w1 ≥ p2/w2 ≥ · · · ≥ pN/wN . We call the algorithm that computes the minimum cost
partition that respects the above order Algorithm FRO (follow ratio order).

3 Special Cases with Optimal Search Strategies

The traditional version of the problem with uniform cost instances can be solved by polynomial time
algorithms [3, 15, 16, 21]. In this section, we first present two lemmas that reveal some properties
an optimal searching strategy must retain; and then, based on the lemmas, we show three special
cases in which optimal search strategies can be found with polynomial time algorithms.
Lemma 1. If there is an order of the boxes such that p1 ≥ . . . ≥ pN while w1 ≤ . . . ≤ wN , then
algorithm FRO follows this order and generates an optimal search strategy.

Proof. Assume towards a contradiction that there exists an optimal solution A = 〈A1, . . . , AD〉
that does not respect the non-decreasing order of the ratios pi/wi. This implies the existence of
indices j < i (and therefore pi < pj and wi > wj) such that Ci ∈ Ad and Cj ∈ Ad+1 for some
1 ≤ d < D. Define a new partition A′ which is almost identical to A except that Ci and Cj are
swapped. To get a contradiction, we show that the cost of A′ is smaller than the cost of A.

Let Pd = P ′d+pi, Wd = W ′d+wi, Pd+1 = P ′d+1 +pj , and Wd+1 = W ′d+1 +wj . A careful examination
of the terms in Eq. (1) from Proposition 1 reveals that both cost(A) and cost(A′) share some
identical terms while cost(A) has unique terms P ′dwi + pjwi + pjW

′
d+1 and cost(A′) has unique

terms P ′dwj + piwj + piW
′
d+1 Now, since pi < pj and wi > wj , it follows that cost(A′) < cost(A). 2

Lemma 2. Let A = 〈A1, . . . , AD〉 be an optimal solution for an arbitrary instance I. Then
Pd/Wd ≥ Pd+1/Wd+1, for 1 ≤ d < D.

5

Proof. Fix d, 1 ≤ d < D. Define another search strategy A′ = 〈A1, . . . , Ad−1, Ad+1, Ad, . . . , AD〉
that is obtained from A by swapping Ad and Ad+1. By Proposition 1, it follows that cost(A′) −
cost(A) = PdWd+1 − Pd+1Wd. This is because in both strategies all the costs that incurred by Wi

for i < d and i > d+ 1 are the same and in both strategies the terms PdWd and Pd+1Wd+1 are part
of the cost. Now, since A is optimal, it follows that PdWd+1 − Pd+1Wd ≥ 0, which is equivalent to
Pd/Wd ≥ Pd+1/Wd+1. 2

Uniform Probabilities: The uniform probability case is when all the probabilities are 1/N (in
contrast to uniform cost case in [3, 15, 16, 21]). This is the case when the searcher has no clue
for the whereabouts of the token but still knows the unlocking costs associated with the boxes. In
Section 2, we show that the algorithm FRO yields optimal solution if the order of optimal searching
strategy is known for any number of rounds 2 ≤ D ≤ N . In the uniform probabilities case, Lemma 1
provides this optimal order by sorting the boxes in non-decreasing order of unlocking cost wi, by
which FRO generates optimal polynomial time solutions.

Atypical token: Recall that an atypical token is one that appears in boxes of lower unlocking
costs with higher probabilities. For an atypical token, the non-increasing order of the probability
vector corresponds to the non-decreasing order of the cost vector. Lemma 1 directly implies that
an optimal search strategy can be found in polynomial time for such tokens.

D = N rounds: The follow corollary is a direct implication of Lemma 2, which implies that the
polynomial time algorithm FRO generates an optimal search strategy for the case D = N .
Corollary 1. For D = N , the optimal search strategy unlocks the boxes in a non-increasing order
of pi/wi, one box per round.

4 Typical Tokens

In this section, we discuss and analyze search strategies for the special case of typical tokens. Recall
that a typical token is more likely to be found in high cost boxes and therefore, after normalizing
the cost and probability values, we assume that pi = wi for all 1 ≤ i ≤ N . We prove that the
problem is strongly NP-Hard even in this special case. In particular, we show that the problem
is essentially a variation of a known load balancing problem. This enables us to apply a known
polynomial time approximation scheme (PTAS) solution for the load balancing problem to our
problem of searching for typical tokens. In addition, we analyze the performance of a natural load
balancing greedy algorithm applied to the search problem. We first show how to compute the cost
for a typical token by simplifying the equations from Proposition 1.
Proposition 3. Let I = (N,D,p,p) be an instance of the typical token problem and A =
〈A1, . . . , AD〉 be a search strategy. Then, cost(A, I) = 1/2 +

∑D
d=1 (Pd)

2/2

Proof. For all 1 ≤ d ≤ D, denote by Pd = Wd the probability as well as the cost of the set Ad. By
Proposition 1,

cost(A, I) =

D∑
d=1

(
Pd

d∑
i=1

Wi

)
=
∑

1≤i≤j≤D
PiPj =

1

2

((D∑
d=1

Pd

)2

+
D∑
d=1

(Pd)
2

)

The proposition follows since
∑D

d=1 Pd = 1. 2

The above proposition implies that for a typical token and a given search strategy A, the cost is
the same regardless of the order of the D sets in A. That is, the task of finding an efficient D-
round search strategy becomes the task of partitioning the N boxes into D sets while minimizing a

6

particular cost function. One can view the sets as machines and the probabilities as the processing
times of tasks. Then the problem is almost identical to the known load balancing problem from [9,11]
whose goal is to minimize the L2 norm of the tasks’ completion time on all the machines. Formally,
Definition 1. Let {T1, . . . , TN} be N tasks and {M1, . . . ,MD} be D machines. The processing
time for Ti on any machine is pi. The load balancing problem is to find an allocation of tasks to
machines that minimizes the L2 norm of the completion time on all machines

∑D
d=1(

∑
Ti∈Md

pi)
2.

If X is the optimization goal of the load balancing problem and Y is the optimization goal of
the search problem, then X = (1 + Y)/2 by Proposition 3 and Definition 1. As a result, we now
show that any approximation algorithm to the load balancing problem is also an approximation
algorithm to the searching for typical tokens problem with an even smaller approximation factor.
Lemma 3. Let ALG be a (1 + ε)-approximation algorithm to the load balancing problem where
(1 + ε) is a tight bound. Then ALG is a (1 + ε′)-approximation algorithm to the searching for
typical tokens problem, where ε′ < ε

2 for all instances and ε′ ≥ ε
D+1 for some instance.

Proof. Let OPT be an optimal solution to the load balancing problem. Let O and A be the L2 norm
of solutions OPT and ALG, respectively. Let OPT′ be an optimal solution to the search typical
tokens problem. Let ALG′ = ALG be a (1 + ε′)-approximation solution to the search problem. Let
O′ = cost(OPT′) and A′ = cost(ALG′). By definition, we have A ≤ (1 + ε)O for all instances in
the load balancing problem. Therefore,

1 + ε′ =
A′

O′
=

0.5 + 0.5A
0.5 + 0.5O

≤ 1 + (1 + ε)O
1 +O

= 1 +
O

1 +O
ε for all instances.

Since (1 + ε) is a tight bound to the load balancing problem, we have A = (1 + ε)O for some
instance. Therefore,

1 + ε′ =
A′

O′
=

0.5 + 0.5A
0.5 + 0.5O

=
1 + (1 + ε)O

1 +O
= 1 +

O
1 +O

ε for some instance.

Since all Pi ≥ 0 and
∑D

i=1 Pi = 1, it follows that the cost
∑D

i=1 P
2
i (Definition 1) of any solution

to the load balancing problem is greater than 1/D and smaller than 1. In particular 1/D ≤ O ≤ 1
and therefore O/(1 +O) ≤ 1/2 for all instances and O/(1 +O) ≥ 1/(D + 1) for some instance. 2

The paper [2] pointed out that the load balancing problem is strongly NP-Hard. The next theorem
follows since Lemma 3 gives a lower bound to the approximation ratio to the searching for typical
tokens problem without N as a parameter.
Theorem 2. For any N > D ≥ 2, the search problem is strongly NP-Hard even for a typical
token.

Constant approximation ratio algorithms to the load balancing problem have been introduced
in [9, 11] and a PTAS to this problem has been presented in [2]. The following theorem is another
corollary of Lemma 3.
Theorem 3. For any N > D ≥ 2, there exists a constant approximation ratio algorithm and a
PTAS to the searching for typical tokens problem.

Algorithm S in [9] is a natural greedy algorithm. Essentially, it allocates boxes one by one in a
non-increasing order of pi to the set Ad currently with the smallest Pd. In some cases, like when
D = 2, one can compute exactly the approximation ratio of S for both the load balancing and the
searching for typical tokens problems. We omit the technical details. The specific approximation
ratios for different values of N and D of Algorithm S for the load balancing problem and for the

7

Case Load Balancing Searching Typical Tokens

N ≤ 4, any D 1 1

D = 2, N ≥ 5 tight ≈ 1.0285 tight ≈ 1.0143

D = 3, N ≥ 5 [83/81, 25/24] [326/324, 49/48]

even D ≥ 4, N ≥ 5 [37/36, 25/24] [1 + 1/36(D + 1), 49/48]

odd D ≥ 5, N > 5 [1 + (D − 1)/36D, 25/24] [1 + (D − 1)/36D(D + 1), 49/48]

Table 1: Approximation ratio of S-algorithm

searching for typical tokens problem (by lemma 3) are shown in Table 1. In the table, the meaning
of [x, y] is that there exists a y approximation factor and there cannot be an approximation factor
smaller than x.

5 Algorithm FRO and General PTAS for Two Rounds

In this section, we analyze the performance of Algorithm FRO for two rounds on arbitrary tokens
whose cost vector has no correlation to the probability vector. Note that the problem for an
arbitrary token is strongly NP hard when 2 ≤ D < N because it is strongly NP-hard already
for a typical token. Therefore, our goal is to prove a guaranteed approximation factor. We show
that the approximation ratio of FRO is 8/7 ≈ 1.143 for D = 2 rounds. For typical tokens, we

slightly improve the ratio to 7−2
√
7

28−10
√
7
≈ 1.108. For both cases, we provide instances that show that

these bounds are tight. We also provide a PTAS for the general case, for two rounds, that can be
extended to a PTAS for any constant number of rounds D.

5.1 Arbitrary tokens

Theorem 4. Algorithm FRO has an approximation ratio 8/7 when D = 2 and N > 2, and the
ratio 8/7 is attainable.

Proof. First, we show that an upper bound on the approximation ratio of FRO for N = 3, 4 is
also an upper found for all N > 2 (Lemma 4). Next, we prove that the upper bound on the
approximation ratio of FRO for N = 3, 4 is 8/7 (Lemmas 5, 6). Finally, for every N , we construct
an instance with approximation ratio 8/7 (Lemma 7). 2

Lemma 4. For each instance with N ≥ 4 for which the approximation ratio of FRO is ρ, there
exists an instance, with either N = 3, 4, for which the approximation ratio of FRO is at least ρ.

Proof. Let the instance with N ≥ 4 consist of boxes {C1, . . . , CN}. Let the OPT partition be
〈X,Y 〉 and let the FRO partition be 〈X ′, Y ′〉. Define the following four subsets of the N boxes:
A = X ∩X ′, B = X ′ \X, C = Y ′ \ Y , D = Y ∩ Y ′. Hence, by definition OPT = 〈A ∪ C,B ∪D〉
and FRO = 〈A ∪B,C ∪D〉.

If all four sets A,B,C,D are not empty, we construct an instance with N = 4 boxes as fol-
lows. The boxes are {CA, CB, CC , CD}, such that pI =

∑
ci∈I pi and wI =

∑
ci∈I wi, where

i = 1 . . . N and I ∈ {A,B,C,D}. Let OPT4 be the optimal solution for N = 4. It fol-
lows that cost(OPT4) = cost(OPTN). This is because; (i) cost(OPT4) cannot be less than
cost(OPTN), otherwise OPTN would not be optimal (taking the corresponding OPT4 partition);
(ii) cost(OPT4) can reach cost(OPTN) by taking OPT4 = 〈{CACC}, {CBCD}〉 (by definition of
partition {A,B,C,D}). It also follows that FRO4 = 〈{CACB}, {CCCD}〉 because otherwise, FRON

will not be 〈A ∪B,C ∪D〉 by definition. Thus, cost(FRO4) ≥ cost(FRON). Therefore,

cost(FRON)/cost(OPTN) ≤ cost(FRO4)/cost(OPT4) .

8

If either of the four sets A,B,C,D is empty, we can similarly construct an instance of N = 3
with at least the same approximation ratio. Finally, if there are at least two empty sets among
A, B, C, D, then OPT is FRO, and thus the approximation ratio is 1. 2

Corollary 2. An upper bound ρ on the approximation ratio of FRO for all instances with N = 3, 4
is also an upper bound on the approximation ratio for all instances with N > 4.

It remains to prove the following two lemmas to complete the proof of Theorem 4. The full proofs
of Lemma 5 and Lemma 6 are technically non-trivial involving tedious case analysis. We present
case analysis and the proofs of some of the cases in Appendices A and B respectively.
Lemma 5. For all instances of N = 3, the approximation ratio ρ = cost(FRO)/cost(OPT) ≤ 8/7.
Lemma 6. For all instances of N = 4, the approximation ratio ρ = cost(FRO)/cost(OPT) ≤ 8/7.

In the next lemma we show that the 8/7 upper bound on the approximation ratio is tight.
Lemma 7. The approximation ratio 8/7 is attainable for any N > 2.

Proof. Consider the instance with p1 = 1/4, p2 = 3/4, p3 = · · · = pN = 0 and w1 = 1/5, w2 = 3/5,
w3 = · · · = wN = 1/(5(N − 2)). FRO outputs the partition (1|23 . . . N) the cost of which is 4/5
while the optimal partition is (2|13 . . . N) the cost of which is 7/10. The ratio is 8/7. 2

5.2 Typical tokens

For a typical token, FRO does not distinguish among the boxes since all the ratios are 1. Therefore,
we assume that an adversary picks the worst permutation on the boxes that is respected by FRO.
Still, we can prove a smaller guaranteed approximation factor for this case.

Theorem 5. Algorithm FRO has an approximation ratio 7−2
√
7

28−10
√
7
≈ 1.108 when D = 2 and N > D,

and this ratio is attainable.

Proof. (outline) The proof is very similar to the proof of Theorem 4. First, the reduction lemma,
Lemma 4, is correct for any type of token. Then the proofs of the equivalent Lemmas (but with
a different ratio) to Lemma 5 and Lemma 6 are easier since there are fewer variables. Finally, the
next lemma demonstrates the instance for which the ratio is attainable. 2

Lemma 8. The approximation ratio 7−2
√
7

28−10
√
7

is attainable for any N > 2.

Proof. For simplicity, assume that 0/0 = 1 since one can replace each zero value with a small ε.
Consider the instance with p1 = w1 = x, p2 = w2 = 1 − 2x, p3 = w3 = x, and p4 = w4 = · · · =
pN = wN = 0. FRO, that respects this order, outputs the partition (1|23 . . . N) the cost of which
is 1 − x + x2 while the optimal partition is (2|13 . . . N) the cost of which is 1 − 2x + 4x2. The

maximum of the ratio is achieved for x = (3−
√

7)/2 and is 7−2
√
7

28−10
√
7
. 2

5.3 A general PTAS for D = 2

We present a PTAS for the problem of finding a strategy of optimal expected cost, when D = 2.
If D is constant, we still have a PTAS, with similar methods as the ones described in this section;
we omit the details because of space considerations.

Fix an optimal solution OPT. Denote by F1 = 1 and F2 the probability that OPT will get to first
and second round respectively (i.e., F2 is the probability that the token is not found by OPT in
the first round). Similarly, let W1 and W2 be the total weight of the cells that OPT probes in the
first and second round, respectively. Therefore, the cost of OPT is C = F1W1 + F2W2.

9

Consider a positive constant ε < 1. The first step of the PTAS is to guess an approximation
within a factor of (1 + ε) of each one of the values of F2, W1, and W2 in the optimal solution. We
denote these approximations with F ′2, W

′
1, W

′
2, respectively. More precisely, if the minimum of a

probability of a cell is pmin = minNn=1 pn, then F2 can be approximated by a value in {(1 + ε)−K ,
. . . , (1 + ε)−2, (1 + ε)−1, 1}, where K = dlog1+ε p

−1
mine. If the minimum of a weight of a cell is

wmin = minNn=1wn, and the sum of weights of all cells is 1, then each of W1, W2 can be approximated
by a value in {(1 + ε)−L, . . . , (1 + ε)−2, (1 + ε)−1, 1}, where L = dlog1+εw

−1
mine. Without loss of

generality we assume that pmin, wmin 6= 0.

In total, we have KL2 possible triples (F ′2,W
′
1,W

′
2), which is polynomial in 1/ε, log(1/pmin) and

log(1/wmin), that is a polynomial number of triples. For every triple, we consider the cost C ′ =
F1W

′
1 + F ′2W

′
2. For one of the triples, each of F ′2, W

′
1, W

′
2, is ε-close to the corresponding value in

the optimal solution, and thus,

C ′ ≤ F1(1 + ε)W1 + (1 + ε)F2(1 + ε)W2 ≤ (1 + ε)2(F1W1 + F2W2) ≤ (1 + 3ε)C. (2)

We apply the following algorithm for each possible triple: With the help of a linear program, we
compute a feasible solution (if it exists) with corresponding values close enough to the values of
the triple and record the solution’s cost. Then, we return as an output the feasible solution with
minimum cost. In the analysis of the scheme it suffices to consider the iteration of the algorithm
in which we tried the values of F ′2, W

′
1, W

′
2 which are ε-close to the corresponding values in OPT.

In particular, for each triple of values (F ′2,W
′
1,W

′
2), we consider the following linear program, over

variables x1,1, . . . , x1,N , x2,1, . . . , x2,N (an integral feasible solution to this linear program has the
following meaning, xi,n = 1 if cell n is probed in round i):

minimize f = W ′1 +
∑N

n=1W
′
2pnx2,n such that:

(a)
∑N

n=1 pnx2,n ≤ F ′2
(b)

∑N
n=1wnx1,n ≤W ′1 and

∑N
n=1wnx2,n ≤W ′2

(c) x1,n + x2,n = 1 for n = 1, . . . , n

(d) xd,n ≥ 0 for d = 1, 2 and n = 1, . . . , n

We say that a cell n is a large cell if pnW
′
2 > εC ′; otherwise we say it is a small cell. We denote

by Y the set of small cells, and by Z the set of large cells. Intuitively, the large cells have a major
influence on the value of the goal function f , so we will treat them separately. Assume B large
cells are assigned to round 2 in the optimal solution. Then,

C ≥ F2W2 ≥ F2W
′
2(1 + ε)−1 > BεC ′(1 + ε)−1 ≥ Bε(1 + ε)−1C.

(The last inequality holds, because C ′ ≥ C.) Therefore, it must be the case that Bε(1 + ε)−1 < 1,
or B < 1 + ε−1. i.e., we have a constant upper bound on the cardinality B of the set X of large
cells that are assigned to round 2 in the optimal solution. Thus, the number of such sets is O(NB),
i.e., polynomial in N .

Our second guessing step would be to guess the set X. That is, for every subset X ⊆ Z, such
that |X| < 1 + ε−1, we set the values of xi,n for i = 1, 2 and n ∈ Z as follows. For all n ∈ X, we
set x1,n = 0 and x2,n = 1, and for all n ∈ Z \ X we set x1,n = 1 and x2,n = 0. The value of the

10

other decision variables are determined by the solution of the following linear program, on the set
of variables {x1,n | n ∈ Y } ∪ {x2,n | n ∈ Y }:

minimize f = W ′1 +
∑N

n=1W
′
2pnx2,n such that:

(a)
∑N

n=1 pnx2,n ≤ F ′2
(b)

∑N
n=1wnx1,n ≤W ′1 and

∑N
n=1wnx2,n ≤W ′2

(c) x1,n + x2,n = 1 for n ∈ Y

(d) xd,n ≥ 0 for d = 1, 2 and n ∈ Y

The last linear program has 2|Y | variables and four types of constraints: (a) One constraint with
pn coefficients (constraint of type (a)), (b) Two constraints with wn coefficients (constraints of type
(b)), (c) |Y | constraints with coefficients equal to 1 (constraints of type (c)), (d) 2|Y | non-negativity
constraints.

We compute an optimal basic solution to the linear program [19]. Such a solution exists for the
correct value of F ′1,W

′
1,W

′
2 and X because for such values OPT corresponds to a feasible solution

for the above linear program whose goal function value is

W ′1 +W ′2F2 ≤W ′1 +W ′2F
′
2 = C ′.

Therefore, the cost of the basic optimal solution which we find, is at most C ′.

Moreover, a basic solution of the above linear program has the property that 2|Y | linearly indepen-
dent constraints of the linear program are set to equality (i.e., as many constraints as the number
of variables). This means that at least |Y | − 3 of the (d)-constraints are set to equality, i.e., at
least |Y | − 3 variables are set to 0. However, if xd,n = 0 for some d = 1, 2 and some n, then
(because of the corresponding (c)-constraint) x(3−d),n = 1. This further implies that the variables
that correspond to at most 3 cells (i.e., 6 variables) are set to fractional (non-integral) values in a
basic optimal solution. A similar method of bounding the number of fractional values of a basic
solution was first employed in [17], in the context of scheduling unrelated parallel machines.

Let x∗ be a basic optimal solution to the linear program. We will associate with it a cost:

C∗ = W ∗1 +W ∗2P
∗
2 ,

where P ∗2 = F ∗2 =
∑N

n=1 pnx
∗
2,n, W ∗1 =

∑N
n=1wnx

∗
1,n, and W ∗2 =

∑N
n=1wnx

∗
2,n. Since W ∗1 ≤ W ′1,

W ∗2 ≤W ′2, and P ∗2 = F ∗2 = F ′2, we have
C∗ ≤ C ′ (3)

Assume without loss of generality that the non-integral values are at a subset of the cells 1, 2,
and 3 (that is, we assume that cells 4, 5, . . . , N have integral solution). We round the non-integral
variables of the linear program so that xr11 = xr12 = xr13 = 0 and xr21 = xr22 = xr23 = 1, i.e., we assign
the non-integral cells to the second round, and xrd,n = x∗d,n, for every other variable. Consider the
cost Cr of the rounded solution; we intend to compare Cr and C∗. We define:

∆p = x∗11p1 + x∗12p2 + x∗13p3

and
∆w = x∗11w1 + x∗12w2 + x∗13w3.

11

Then,

∆C = Cr − C∗

= (W ∗1 −∆w) + (W ∗2 + ∆w)(P ∗2 + ∆p)− (W ∗1 +W ∗2P
∗
2)

= ∆w(P ∗2 + ∆p− 1) + ∆p ·W ∗2 . (4)

Define P−2 = P ∗2 − (x∗21p1 + x∗22p2 + x∗23p3), i.e., P−2 is the sum of the probabilities of the integral
cells of round 2, i.e., it does not contain any probability for cells 1, 2, and 3. But then, P ∗2 + ∆p =
P−2 + p1 + p2 + p3 ≤ 1, which implies

∆w(P ∗2 + ∆p− 1) ≤ 0. (5)

On the other hand,

∆p ·W ∗2 ≤ ∆p ·W ′2 = x∗11p1W
′
2 + x∗12p2W

′
2 + x∗13p3W

′
2

≤ x∗11εC ′ + x∗12εC
′ + x∗13εC

′ ≤ 3εC ′. (6)

Then, using inequalities (5) and (6), equation (4) implies

Cr ≤ C∗ + 3εC ′ ≤ C ′ + 3εC ′ = (1 + 3ε)C ′ ≤ (1 + 3ε)2C ≤ (1 + 15ε)C,

where the second inequality is true because of (3) and the fourth inequality because of (2). Therefore
the rounded solution is an (1 + ε′)-approximation, if we choose ε = ε′/15 above.

Although the PTAS we described above is of theoretical interesting, it might not be very attractive
for use in a real system, because it is quite complicated to implement and it relies on computational
tools like linear program solvers. Compare, for example, with the simplicity of algorithm FRO.
We supply theoretical bounds on the worst-case performance for both the PTAS and the FRO
algorithm, so that a designer of a real system can choose what suits best the application. As we
have seen, the running time of the PTAS depends on the minimum values of probability and cost.
If we have a guarantee that these values are not too small, we can avoid solving a linear program,
for every triple (F ′2,W

′
1,W

′
2), and instead reduce to a version of the knapsack problem, that can be

solved with simpler methods, and still have a PTAS.

6 Open Problems

We conjecture that the 8/7 bound for the FRO algorithm, from section 5.1, holds also for D > 2.
Similarly to the D = 2 case, we can reduce the problem instances with any N to instances with
D ≤ N ≤ D2. However, we do not know how to handle all these cases, even for D = 3. We only
know how to resolve an instance with N = 4 and D = 3 showing a 8/7 lower bound for algorithm
FRO.

In section 5.3, we presented a PTAS for D = 2, running in polynomial time with respect to the
size of input (minimum encoding of small least probability and cost), that can be generalized to
a PTAS for a constant number of searching rounds D. It would be interesting to find a PTAS
running in polynomial time with respect to the number of boxes and for an arbitrary number of
rounds D ≤ N (i.e., not necessarily constant D).

The uniform cost case was investigated also in many settings for paging multiple users in Cellular
Networks. These settings of finding more than one hidden token could be addressed in the non-
uniform case as well.

12

References

[1] Akyildiz, I. F., Mcnair, J., Ho, J., Uzunalioglu, H., and Wang, W. Mobility management in next-
generation wireless systems. In Proc. IEEE (1999), pp. 1347–1384.

[2] Alon, N., Azar, Y., Woeginger, G. J., and Yadid, T. Approximation schemes for scheduling on parallel
machines. J. Scheduling 1, 1 (1998), 55–66.

[3] Bar-Noy, A., Feng, Y., and Golin, M. J. Paging mobile users efficiently and optimally. In Proc. IEEE
Conference on Computer Communications (2007), pp. 1910–1918.

[4] Bar-Noy, A., and Klukowska, J. Finding mobile data: efficiency vs. location inaccuracy. In Proc. Annual
European Symposium on Algorithms (ESA) (2007), pp. 111–122.

[5] Bar-Noy, A., and Malewicz, G. Establishing wireless conference calls under delay constraints. J. Algorithms
51, 2 (2004), 145–169.

[6] Bar-Noy, A., and Mansour, Y. Competitive on-line paging strategies for mobile users under delay constraints.
In Proc. ACM Symposium on Principles of Distributed Computing (PODC) (2004), pp. 256–265.

[7] Bar-Noy, A., and Naor, Z. Efficient multicast search under delay and bandwidth constraints. Wireless
Networks 12, 6 (2006), 747–757.

[8] Buchanan, M. Ecological modelling: the mathematical mirror to animal nature. Nature 453 (2008), 714–716.

[9] Chandra, A. K., and Wong, C. K. Worst-case analysis of a placement algorithm related to storage allocation.
SIAM J. Comput. 4, 3 (1975), 249–263.

[10] Chang, N. B., and Liu, M. Revisiting the TTL-based controlled flooding search: optimality and randomization.
In Proc. 10th Annual International Conference on Mobile Computing and Networking (MOBICOM) (2004),
pp. 85–99.

[11] Cody, R. A., and Coffman, E. G. Record allocation for minimizing expected retrieval costs on drum-like
storage devices. J. ACM 23, 1 (1976), 103–115.

[12] Epstein, L., and Levin, A. The conference call search problem in wireless networks. Theor. Comput. Sci. 359,
1-3 (2006), 418–429.

[13] Epstein, L., and Levin, A. A PTAS for delay minimization in establishing wireless conference calls. Discrete
Optimization 5, 1 (2008), 88–96.

[14] Gau, R.-H., and Haas, Z. J. Concurrent search of mobile users in cellular networks. IEEE/ACM Trans. Netw.
12, 1 (2004), 117–130.

[15] Goodman, D. J., Krishnan, P., and Sugla, B. Minimizing queuing delays and number of messages in mobile
phone location. Mobile Netw. and Appl. 1, 1 (1996), 39–48.

[16] Krishnamachari, B., Gau, R.-H., Wicker, S. B., and Haas, Z. J. Optimal sequential paging in cellular
wireless networks. Wireless Netw. 10, 2 (2004), 121–131.

[17] Lenstra, J. K., Shmoys, D. B., and Tardos, É. Approximation algorithms for scheduling unrelated parallel
machines. Mathematical Programming 46 (1990), 259–271.

[18] Madhavapeddy, S., Basu, K., and Roberts, A. Adaptive paging algorithms for cellular systems, vol. 1.
Kluwer Academic Publishers, Norwell, MA, USA, 1996, pp. 83–101.

[19] Matousek, J., and Gärtner, B. Understanding and Using Linear Programming. Springer, 2006.

[20] Rose, C. State-based paging/registration: a greedy technique. IEEE Trans. Veh. Tech. 48, 1 (January 1999),
166–173.

[21] Rose, C., and Yates, R. D. Minimizing the average cost of paging under delay constraints. Wireless Netw. 1,
2 (1995), 211–219.

[22] Rose, C., and Yates, R. D. Ensemble polling strategies for increased paging capacity in mobile communication
networks. Wireless Netw. 3, 2 (1997), 159–167.

[23] TSG/WG. Section 7.6.5.18, 3GPP TS 09.02 Mobile Application Part (MAP) Specification, ver. 8.8.1, 2008.

13

A Proof of Lemma 5

For N = 3, D = 2, assume boxes C1, C2, C3, are sorted in decreasing order of pi/wi. The only
possible FRO ordered partitions are 〈{C1, C2}, {C3}〉 and 〈{C1}, {C2, C3}〉. We use the shorthand
notation 12|3 and 1|23, respectively, for the above ordered partitions. The only possible OPT
partitions that are not of the FRO form are 2|13 and 13|2, because 3|12 has cost at least as much
as 12|3, and 23|1 has cost at least as much as 1|23.

The costs for the above mentioned partitions are:

cost(12|3) = 1− p1w3 − p2w3 cost(1|23) = 1− p1w2 − p1w3

cost(2|13) = 1− p2w1 − p2w3 cost(13|2) = 1− p1w2 − p3w2

Therefore we have to compute the worst ratio for four possible cases of FRO and OPT ordered
partitions:

FRO : 12|3 and OPT : 2|13 FRO : 12|3 and OPT : 13|2
FRO : 1|23 and OPT : 2|13 FRO : 1|23 and OPT : 13|2

Because of the space limitation, we prove the first of the four cases. The rest can be proved by
similar methods.

Proof. Assume FRO: 12|3 and OPT: 2|13. Since FRO outputs 12|3, the cost of 12|3 is not worse
than the cost of the other FRO ordered partition 1|23, which implies

p1w2 ≤ p2w3. (7)

The ratio cost(FRO)/cost(OPT) is:

ρ =
1− p1w3 − p2w3

1− p2w1 − p2w3
.

Let d = (p1w2 − p2w1)/(w1 + w2) ≥ 0. Consider a new input, by substituting p1 with p1 − d and
p2 with p2 + d. In the new input, equation (7) still holds and therefore FRO outputs the same
partition. Moreover, in the new input, OPT outputs the same partition too. The ratio ρ′ of the
new input is at least the ratio of the original input, because:

ρ′ ≥ ρ ⇐⇒ (p1w2 − p2w1)(w1 + w3)(1− p1w3 − p2w3) ≥ 0

and each factor of the product (p1w2 − p2w1)(w1 + w3)(1− p1w3 − p2w3) is non-negative.

The above transformation of p1 to p1 − d and p2 to p2 + d has the effect of creating a new input in
which the p/w ratio of boxes 1 and 2 is the same. It is possible to solve exactly the optimization
problem of maximizing the ratio of FRO over OPT under this additional constraint. The solution
of the optimization problem gives a maximum ratio of 8/7 for input: p = 〈1/4, 3/4, 0〉, w =
〈1/5, 3/5, 1/5〉. In the following we sketch a proof of ρ ≤ 8/7. Since boxes 1 and 2 have the same
p/w ratio, we write p1 = rw1 and p2 = rw2. We want to prove that the approximation ratio is:

1− rw1w3 − rw2w3

1− rw1w2 − rw2w3
≤ 8

7

14

or equivalently r(8w1w2 − 7w1w3 + w2w3) ≤ 1. Therefore, it is enough to study the maximization
problem:

maximize r(8w1w2 − 7w1w3 + w2w3) under:

w1 + w2 + w3 = 1 ∧ w3 ≥ w1 ∧ w2 ≥ w3 ∧ rw1 + rw2 ≤ 1.

The constraint w3 ≥ w1 is implied by p1w2 ≤ p2w3, the constraint w2 ≥ w3 is implied by p2w1 ≤
p1w3 (which is implied by cost(2|13) ≤ cost(12|3)), the constraint rw1 + rw2 ≤ 1 is implied by
p1 + p2 ≤ 1. Writing w3 = 1−w1 +w2 and by the fact that r ≤ 1/(w1 +w2) we solve the following
maximization problem (which might have a bigger solution):

maximize
8w1w2 − 7w1(1− w1 − w2) + w2(1− w1 − w2)

w1 + w2

under: w1 ≥ 0 ∧ 1− w2 ≥ 2w1 ∧ 2w2 ≥ 1− w1.

The value of the maximization function depends on the values of w1, w2. The range of w1, w2 is
a triangle in the plane R2. We will compute the maximum in each of the segments of the form
w2 = w0

2 − 1
2w1, with w1 ∈ [0, 23(w0

2 − 1
2)], and w0

2 ∈ [12 , 1] (each value of w0
2 defines a segment in

the triangle, parallel to the 1 − 2w2 = 2w1 side of the triangle). The value of the maximization
function is:

w0
2(1− w0

2) + (18w0
2 − 9)w1 − 25w2

1

w0
2 − w1

.

For w0
2 ≤ 25/47, the maximum is achieved at w1 = 2

3(w0
2 − 1

2) and it is (2 − w0
2)/3 < 1. For

w0
2 ≥ 25/47, the maximum is achieved at w1 = 1

5(5w0
2 − 2

√
2
√
w0
2 + (w0

2)2) and it is:

− 20
√

2(w0
2)2√

w0
2(w0

2 + 1)
+

(
32− 20

√
2√

w0
2(w0

2 + 1)

)
w0
2 + 9.

The above as a function of w0
2 ∈ [1/2, 1] is convex and therefore its maximum is attained at one of

the extremes of the range [1/2, 1], namely w0
2 = 1 for a maximum value of 1, as expected. Therefore

w1 = 1/5, which implies w2 = 3/5. We choose the maximum possible r to satisfy the constraint
r ≤ 1/(w1 + w2), which is r = 5/4. 2

15

B Proof of Lemma 6

For N = 4 and D = 2, if there is one round with three boxes in one of the FRO and OPT
solutions, then there are two boxes in this round that are in the same round in the other solution
(for example, boxes 1 and 3 when FRO: 123|4 and OPT: 14|23). By combining the above two
boxes to one (summing the probabilities and weights), we get an instance of N = 3, D = 2, with
the same approximation ratio, i.e., we have reduced the problem of finding the worse approximation
ratio to the case N = 3 that we studied before.

Therefore, we only have to consider the following cases:

FRO : 12|34 and OPT : 13|24 FRO : 12|34 and OPT : 24|13

FRO : 12|34 and OPT : 23|14 FRO : 12|34 and OPT : 14|23

We will consider inputs in which the probabilities or weights do not sum up to 1 and therefore need
the following observation, whose proof is based on the fact that a ratio of two costs is oblivious to
a scaling of pis or wis and we omit the details. We denote the p/w-ratio of box i with ri.
Observation 1. Scaling pis and wis by any positive factor will not affect the approximation ratio.

Again, because of space considerations, we only analyze the first case, where FRO is 12|34 and
OPT is 13|24. The other cases are similar and we will give a sketch later.
Lemma 9. For instances of N = 4 in which OPT = (13|24) and FRO = (12|34), the approximation
ratio is at most 8/7.

In order to prove the above, we transform gradually any instance of the above form to instances
that have worse and worse approximation ratio. For the final instance, it is possible to solve an
optimization problem and show that the worse approximation ratio is 8/7, like the N = 3 case.
Observation 2. ρ is maximized if w1 = 0.

Proof. Consider the input p = 〈p1, p2, p3, p4〉 and w = 〈w1, w2, w3, w4〉 and assume it is ordered
according to p/w ratio and that FRO:12|34 and OPT:13|24. Set ρ = cost(FRO)/cost(OPT). We
have the following costs:

cost(FRO) = cost(12|34) = (p1 + p2)(w1 + w2) + (p3 + p4)(w1 + w2 + w3 + w4),

cost(1|234) = p1w1 + (p2 + p3 + p4)(w1 + w2 + w3 + w4),

cost(123|4) = (p1 + p2 + p3)(w1 + w2 + w3) + p4(w1 + w2 + w3 + w4),

cost(OPT) = cost(13|24) = (p1 + p3)(w1 + w3) + (p2 + p4)(w1 + w2 + w3 + w4).

Moreover,
cost(12|34) ≤ cost(1|234), cost(12|34) ≤ cost(123|4).

Now change the input by setting w1 = 0. Then, for that input, the order of boxes does not change,
and it is still the case that FRO: 12|34. Moreover the new approximation ratio is:

ρ′ = cost′(FRO)/cost′(OPT) ≥ (cost(FRO)− w1)/(cost(OPT)− w1)

= (ρ− w1/cost(OPT))/(1− w1/cost(OPT)) ≥ ρ

This implies setting w1 = 0 will not decrease the approximation ratio ρ. 2

Similarly, we can prove the following.
Observation 3. ρ is maximized if p4 = 0.

16

Given w1 = 0 and p4 = 0, we now prove:
Observation 4. For p2

w2
= p3

w3
, ρ is maximized.

Proof. Let r2 = p2/w2, and r3 = p3/w3. Initially r2 ≥ r3. Since FRO is 12|34, we have cost(12|34) ≤
cost(1|234) and cost(12|34) ≤ cost(123|4), which implies w2 ≤ p2(w3 + w4)/p1 and p3 ≤ (p1 +
p2)w3/w4. Observe that for the extreme values w2 = p2(w3 + w4)/p1 and p3 = (p1 + p2)w3/w4,
we have r2 ≤ r3 and therefore there are values of p3 and w2 both greater or equal to the initial
respective values, for which the ratios of the two boxes become the same. Since for

ρ =
cost(FRO)

cost(OPT)
=

(p1 + p2)w2 + p3(w2 + w3 + w4)

(p1 + p3)w3 + p2(w2 + w3 + w4)

we have ∂ρ
∂p3
≥ 0 and ∂ρ

∂w2
≥ 0, the approximation ratio when r2 = r3 is greater or equal than the

initial approximation ratio. 2

Now, with a similar optimization analysis like the one done for N = 3, it can be proven that
the worst possible ratio is 8/7 (we omit the tedious details). Otherwise, one can use a symbolic
optimization program like Mathematica and get the same result.

When OPT outputs 23|14, we transform the input as follows: We set p4 to 0, decrease w2 until the
first two boxes have the same ratio (r1 = r2), and increase p3 until the first of the following events
happens: a) r2 = r3 or b) cost(12|34) = cost(123|4). It can be proven by taking derivatives of the
approximation ratio ρ that the above transformations never make ρ smaller. Now what remains is
to study the two cases with a) p4 = 0, r2 = r3 and b) p4 = 0, cost(12|34) = cost(123|4). With an
optimization analysis like above, it is possible to prove that 8/7 is an upper bound for ρ.

When OPT outputs 14|23, we transform the input as follows: We set w1 to 0, decrease p3 until
r3 = r4, and increase w2 until the first of the following events happens: a) r2 = r3 or b) cost(12|34) =
cost(1|234). Again it can be shown by taking derivatives of ρ that the above transformations never
make ρ smaller and what remains is to study the two cases with a) w1 = 0, r2 = r3 and b) w1 = 0,
cost(12|34) = cost(1|234). Again for both of the above cases, it can be proven that 8/7 is an upper
bound for ρ.

Finally, when OPT outputs 14|23, we do the following transformations: We decrease w2 until
r1 = r2 and decrease p3 until r3 = r4. Again it can be shown by taking derivatives of ρ that the
above transformations never make ρ smaller, and (by an optimization analysis) that the maximum
possible ρ for an input of the last form is 8/7.

17

C Simulation

We conduct simulation on the major application of this problem: paging a mobile user (token) in
cells (boxes) in a cellular network system. Parameters of the problem, N , D, p and w, retain the
same semantics. We mainly explore some aspects of the problem that are not covered by theoretical
results. We acquire real user data from Shenzhen, China, provided by China Unicom. First, we
analyze and model the user probability and cell congestion. Second, we provide our implemented
algorithms and metrics to evaluate the performance of algorithms. Next, we test the performance of
algorithms S and FRO on Zipf data in order to evaluate their actual performance, and on random
uniform data in order to test their worst case and average performance without any assumption
about user locations. Finally, we evaluate the approximation ratio of S and FRO on real user data.

Data Analysis: In [8], the authors revealed that human beings appear in N different places
with a frequency that follows the Zipf distribution, which is defined as p = (p1, . . . , pN) with
pi = i−α/

∑N
i=1 i

−α where α ≥ 0 is the Zipf parameter. Zipf distribution obeys a power law. When
α = 0, it is a uniform distribution; as α grows, the distribution becomes more and more uneven.

We obtain 171929 appearances of 996 users in 5625 cells on 31 consecutive days from the boundary
of a metro and a suburban region. For every user appearance, we record pair 〈user ID, cell ID〉
that denotes the user and the cell in which it appears.

Cellwise, we model the cell congestion vector w of the 5625 cells. We estimate parameter α using
the least square method with cross validation and we obtain α = 0.4429. The cross validation
indicates that the estimates for α differ less than 1% when using the odd entries and even entries
of the data separately. This further validates our assumption of a Zipf distribution. The cell
congestion w and the estimated Zipf w is shown in Figure 1(a).

Userwise, we model the user probability vector p of all 996 users. Since each user only appears
in a limited number of cells, techniques like cross validation cannot be used because we do not
have enough samples. We randomly plot many user probability vectors and their corresponding
estimated Zipf distribution, and almost all of the plots appear like in Figure 1(b). This indicates
that p follows a Zipf distribution.

0 500 1000 1500 2000
0

500

1000

1500

cell index

us

er
 a

pp
ea

ra
nc

es

real w
estimated Zipf w
α=0.4429

(a) Cell congestion w and estimated Zipf distri-
bution; x-axis: cell indices, y-axis: number of
user appearances

0 5 10 15 20
0

1

2

3

4

5

6

cell index

ap

pe
ar

an
ce

s

real p
estimated Zipf p
α=0.6065

(b) A random user’s p and the estimated Zipf
distribution; x-axis: cell indices, y-axis: number
of appearances

Figure 1: Data Analysis

Algorithms and Benchmarks: We implement four algorithms: S and FRO are being evaluated;
OPT and OPT-N are metrics to evaluate algorithm performance.

FRO: Algorithm FRO uses the dynamic programming scheme in [3, 15, 16, 18, 21]. The most

18

efficient implementation in [3] takes Θ(ND) time. S: S is the greedy algorithm introduced in [9].
It is implemented based on p without using information on w. It sorts cells by a non-increasing
order of pi and allocate cells in this order, one at a time, to the partition d with smallest sum
of allocated cells Pd. Its complexity is Θ(ND). It is a 49/48-competitive algorithm for typical
users. OPT: Since the problem is NP-Hard, obtaining optimal solution takes exponential time.
Our most efficient implementation of OPT computes all permutations of D-partition on the N cells
and takes Θ(DN) time. On current computers, this implementation allows us to run instances up
to N = 20 and D = 2, N = 15 and D = 3, or in general DN ≤ 220. OPT-N : For larger values of
D and N , computing an OPT solution takes too long. OPT-N is the polynomial time algorithm
that optimally pages cells in D = N rounds. According to Corollary 1, this can be implemented in
Θ(N logN) time by sorting cells by pi/wi. OPT-N gives a lower bound of the cost of OPT.

Randomly generated data: We test the performance of our algorithms on randomly generated
data. We run two algorithms, S and FRO, on Zipf distributed data and uniform random data.
Our purpose of using Zipf data is to study how the algorithms work in real world applications;
our purpose of using uniform random data is to study how the algorithms behave if we have no
knowledge about users’ whereabouts. We evaluate small data instances by comparing the results
with OPT, and large instances with OPT-N .

First test: We test the performance of S and FRO on a typical user, that is, p = w ∼ Zipf(α).
The results are shown in figure 2. We can see that on typical users, both algorithms perform very
well, and S slightly outperforms FRO because it is smarter in breaking ties (of pi/wi). We run the
test on different Ns and Ds and the results are very similar. We also run the FRO algorithm with
different initial order of cells and the results are similar.

0 0.5 1 1.5 2 2.5 3
0.99

0.995

1

1.005

1.01

1.015

1.02

1.025

α

co
st

 (
O

P
T

=
1)

S
FRO
49/48 − Upper bound of S−Alg

(a) N = 20, D = 2, y-axis: cost (OPT = 1)

0 0.5 1 1.5 2 2.5 3
0.65

0.7

0.75

0.8

0.85

0.9

α

co
st

S D=2
FRO D=2
S D=3
FRO D=3

(b) N = 100, y-axis: cost (absolute value)

Figure 2: Performance of S and FRO on a typical user, p = w ∼ Zipf(α), x-axis: α

Second Test: We test the performance of algorithm FRO on uniform random p and w for larger
number of rounds D to complement our theoretical results. Figure 3(a) shows the first result. We
can see that FRO performs stably for larger D because the worst-case cost is very close to average
cost. We also see that when D ≥

√
N , FRO is almost optimal. This is because when D is larger,

there is less flexibility for the optimal solution to not obey the cellwise order. To evaluate the
performance of FRO on not very large D, we run the test shown in Figure 3(b). It indicates that
FRO performs reasonably well when compared with OPT-N (recall that when D = 2, FRO is a
8/7-approximation). FRO also performs very stably because the worst-case and average costs are
very close and the curve is very smooth. We also run this test on random Zipf data. We create
random Zipf data by shuffling w on a typical Zipf user. To do such a shuffle we take a random
permutation of the elements of the vector w. The results are very similar.

Third Test: We test FRO on atypical users. We generate atypical users by randomly generating

19

0 200 400 600 800 1000
0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

number of cells N

co
st

 (
O

P
T

−
N

=
1)

D=2 worst
D=2 average
D=logN, worst
D=logN average

D=√N worst

D=√N average
OPT−N

(a) Average and worst case cost (OPT-N =
1) of algorithm FRO, N = 50 . . . 1000, D =
2, logN,

√
N , uniform random p and w, 10,000

runs.

0 5 10 15 20
0

1

2

3

4

5

number of rounds D

co
st

 (
O

P
T

−
N

=
1)

worst
average
OPT−N

(b) Average and worst case cost (OPT-N = 1) of
algorithm FRO, N = 100, D = 1 . . . 20, uniform
random p and w, 10,000 runs.

Figure 3: Tests on uniform data (similar results for Zipf p and w after random shuffle)

a sorted p, reversing its order and randomly generating another sorted w. Both w and p are
normalized. We test 1,000,000 instances for which (N = 20, D = 2), and (N = 15, D = 3) and the
solutions are always optimal. This coincides with our theoretical results.

Fourth Test: Finally, we test FRO for a general user. A general user is a user that follows a
Zipf location distribution. However, it may or may not follow the massive behavior. Therefore, we
define a general user to be one with w ∼ Zipf(α = 0.4429) and p ∼ Zipf(α′ = 0.5), while p and w
are independently shuffled. Lemma 7 shows that the FRO solution can be 8/7 times worse than
the optimal. We measure the average and worst approximation ratio in 1,000,000 runs and the
results are shown in Table 2(a). We conclude that for the above random user the FRO algorithm
has almost optimal performance on average and worst case performance much better than 8/7.

(a) Approximation ratio FRO, general
user, D = 2

metric N = 4 N = 5

worst 1.00868 1.00194
average 1.00199 1.00009

metric N = 8 N = 10

worst 1.00489 1.00557
average 1.00021 1.00016

(b) Approximation ratio, real user

Setting Algo. Average Worst

N = 20 D = 2
S 1.13475 9.60367

FRO 1.00000 1.00001

N = 15 D = 3
S 1.07308 5.94067

FRO 1.00000 1.00036

N = 10 D = 4
S 1.01648 2.52683

FRO 1.00007 1.00080

Table 2: Approximation Ratios

We also try to tune up algorithm FRO not only taking consideration the pi/wi ratio but also pi
and wi values. Our preliminary results indicate this does not provide noticeable improvement.

Real User Data: We test the performance of FRO and S on real user data. In order to obtain
the optimal solution, for each user, we only take their top 20 or 15 most frequent cells. This is
justifiable because no user appears more than once beyond their top 20 favorite cells. Vector p is
acquired directly from the user and w is a universal vector. Table 2(b) shows the results. We can
see that algorithm FRO performs almost optimally with respect to both average and worst-case
cost. Algorithm S performs fine with respect to average cost but poorly for worst-case cost. This
indicates there is a certain portion of not-very-typical users, of which some are very atypical.

20

