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Abstract. We provide a framework for online conflict-free coloring any hypergraph. We intro-
duce the notion of degenerate hypergraph, which characterizes hypergraphs that arise in geometry.
We use our framework to obtain an efficient randomized online algorithm for conflict-free coloring any
k-degenerate hypergraph with n vertices. Our algorithm uses O(k logn) colors with high probability
and this bound is asymptotically optimal, because there are families of k-degenerate hypergraphs that
need that many colors. Moreover, our algorithm uses O(k log k logn) random bits with high probabil-
ity. As a corollary, we obtain asymptotically optimal randomized algorithms for online conflict-free
coloring some hypergraphs that arise in geometry. Our algorithm uses exponentially fewer random
bits than previous algorithms.

We introduce algorithms that are allowed to perform a few recolorings of already colored points.
We provide deterministic online conflict-free coloring algorithms for points on the line with respect
to intervals and for points on the plane with respect to halfplanes (or unit disks) that use O(logn)
colors and perform number of recolorings at most linear in n.
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1. Introduction. A hypergraph is a pair (V,E), where V is a finite set and
E ⊆ P(V ). The set V is called the ground set or the vertex set and the elements
of E are called hyperedges. A proper k-coloring of a hypergraph H = (V,E), for
some positive integer k, is a function C : V → {1, 2, . . . , k} such that no S ∈ E with
|S| ≥ 2 is monochromatic. Let χ(H) denote the minimum integer k for which H
has a k-coloring. Then χ(H) is called the chromatic number of H. A conflict-free
coloring of H is a coloring of V with the further restriction that for any hyperedge
S ∈ E there exists a vertex v ∈ S with a unique color (i.e., no other vertex of S has
the same color as v). Both proper coloring and conflict-free coloring of hypergraphs
are generalizations of vertex coloring of graphs (the definition coincides when the
underlying hypergraph is a simple graph). Therefore, computing such hypergraph
colorings is at least as hard as computing vertex colorings for simple graphs.

The study of conflict-free colorings originated in the work of Even et al. [8] and
Smorodinsky [17] who were motivated by the problem of frequency assignment in
cellular networks. Specifically, cellular networks are heterogeneous networks with
two different types of nodes: base stations (that act as servers) and clients. Base
stations are interconnected by an external fixed backbone network whereas clients are
connected only to base stations. Connections between clients and base stations are
implemented by radio links. Fixed frequencies are assigned to base stations to enable
links to clients. Clients continuously scan frequencies in search of a base station with
good reception. The fundamental problem of frequency assignment in such cellular
networks is to assign frequencies to base stations so that every client, located within
the receiving range of at least one station, can be served by some base station, in the
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sense that the client is located within the range of the station and no other station
within its reception range has the same frequency (such a station would be in conflict
with the given station due to mutual interference). The goal is to minimize the number
of assigned frequencies (“colors”) since the frequency spectrum is limited and costly.

Suppose we are given a set of n base stations, also referred to as antennas. As-
sume, for simplicity, that the area covered by a single antenna is given as a disk in
the plane. Namely, the location of each antenna and its radius of transmission is fixed
and is given (the transmission radii of the antennas are not necessarily equal). Even
et al. [8] showed that one can find an assignment of frequencies to the antennas with
a total of at most O(log n) frequencies such that each antenna is assigned one of the
frequencies and the resulting assignment is free of conflicts, in the preceding sense.
Furthermore, it was shown that this bound is worst-case optimal. Let R be a set of
regions in the plane. For a point p ∈ ∪r∈Rr, let r(p) = {r ∈ R | p ∈ r}. Let H(R)
denote the hypergraph (R, {r(p) | p ∈ ∪r∈R}). We say that H(R) is the hypergraph
induced by R. Thus, Even et al. [8] showed that any hypergraph induced by a family
R of n discs in the plane admits a conflict-free coloring with only O(log n) colors and
that this bound is tight in the worst case. Furthermore, such a coloring can be found
in deterministic polynomial time. However, in [8], it was also shown that finding the
minimum number of colors needed to conflict-free color a given collection of discs
is NP-hard even when all discs are congruent, and an O(log n) approximation-ratio
algorithm is provided. The results of [8] were further extended in [11] by combining
more involved probabilistic and geometric ideas. The main result of [11] is a general
randomized algorithm which conflict-free colors any set of n “simple” regions (not
necessarily convex) whose union has “low” complexity, using a “small” number of
colors. In addition to the practical motivation, this new coloring model has drawn
much attention of researchers through its own theoretical interest and such colorings
have been the focus of several recent works (see, e.g., [7, 8, 9, 11, 13, 15, 17, 18, 4]).
To capture a dynamic scenario where antennas can be added to the network, Fiat et
al. [9] initiated the study of online conflict-free coloring of hypergraphs. They con-
sidered a very simple hypergraph H which has its vertex set represented as a set P
of n points on the line and its hyperedge set consists of all intersections of the points
with some interval. The set P ⊂ R is revealed by an adversary online: Initially, P is
empty, and the adversary inserts points into P , one point at a time. Let P (t) denote
the set P after the t-th point has been inserted. Each time a point is inserted, the
algorithm needs to assign a color C(p) to it, which is a positive integer. Once the
color has been assigned to p, it cannot be changed in the future. The coloring should
remain conflict-free at all times. That is, for any interval I that contains points of
P (t), there is a color that appears exactly once in I. Among other results, [9] pro-
vided a randomized algorithm for online conflict-free coloring n points on the line
with O(log n log log n) colors with high probability. Their algorithm assumes that the
adversary is oblivious in the sense that it does not have access to the random bits
used by the probabilistic algorithm. They also provided a deterministic algorithm for
online conflict-free coloring n points on the line with Θ(log2 n) colors in the worst
case.

An online conflict-free coloring framework. In this work, we investigate the most
general form of online conflict-free coloring applied to arbitrary hypergraphs. Suppose
the vertices of an underlying hypergraph H = (V,E) are given online by an adversary.
Namely, at every given time step t, a new vertex vt ∈ V is given and the algorithm
must assign vt a color such that the coloring is a valid conflict-free coloring of the
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hypergraph that is induced by the vertices Vt = {v1, . . . , vt} (see the exact definition
in section 2). Once vt is assigned a color, that color cannot be changed in the future.
The goal is to find an algorithm that minimizes the maximum total number of colors
used (where the maximum is taken over all permutations of the set V ).

We present a general framework for online conflict-free coloring any hypergraph.
Interestingly, this framework is a generalization of some known coloring algorithms.
For example the unique maximum greedy algorithm of [9] can be described as a special
case of our framework. Also, when the underlying hypergraph is a simple graph then
the first-fit greedy online algorithm is another special case of our framework. Based
on this framework, we introduce a randomized algorithm and show that the maximum
number of colors used is a function of the degeneracy of the hypergraph. We define
the notion of a k-degenerate hypergraph as a generalization of the same notion for
simple graphs. Specifically we show that if the hypergraph is k-degenerate, then our
algorithm uses O(k log n) colors with high probability, against an oblivious adversary
(see [3]). An oblivious adversary has to commit to a specific input sequence before
revealing the first vertex to the algorithm without knowing the random bits that the
algorithm is going to use.

As demonstrated in [9], the problem of online conflict-free coloring the very spe-
cial hypergraph induced by points on the real line with respect to intervals is highly
non-trivial. The best randomized online conflict-free coloring algorithm of [9] uses
O(log n log log n) colors. Kaplan and Sharir [13] studied the special hypergraph in-
duced by points in the plane with respect to halfplanes and unit disks and obtained
a randomized online conflict-free coloring with O(log3 n) colors with high probability.
Recently, the bound Θ(log n) just for these two special cases was obtained indepen-
dently by Chen [5] (see also [6]). Our algorithm is more general and uses only Θ(log n)
colors; an interesting evidence to our algorithm being fundamentally different from
the ones in [5, 9, 13], when used for the special case of hypergraphs that arise in ge-
ometry, is that our algorithm uses exponentially fewer random bits. The algorithms
of [5, 13] use Θ(n) random bits and our algorithm uses O(log n) random bits.

Another interesting corollary of our result is that we obtain a randomized online
coloring for k-inductive graphs with O(k log n) colors with high probability. This case
was studied by Irani [12] who showed that the first-fit greedy algorithm achieves the
same bound deterministically.

Deterministic online conflict-free coloring with recoloring. We initiate the study
of online conflict-free coloring where at each step, in addition to the assignment of a
color to the newly inserted point, we allow some recoloring of other points. The bi-
criteria goal is to minimize the total number of recolorings done by the algorithm and
the total number of colors used by the algorithm. We introduce an online algorithm
for conflict-free coloring points on the line with respect to intervals, where we recolor
at most one already assigned point at each step. Our algorithm uses Θ(log n) colors.
This is in contrast with the O(log2 n) colors used by the best known deterministic
algorithm by [9] that does not recolor points. We also provide an online algorithm for
conflict-free coloring points on the plane with respect to halfplanes that uses Θ(log n)
colors and the total number of recolorings is O(n). For this problem no deterministic
algorithm was known before.

From the application point of view, there is motivation to study this recoloring
model. The frequency spectrum is quite expensive, so a solution which strictly uses
a logarithmic number of colors is desirable. On the other hand excessive recoloring is
not desirable, because if a base station is given another color there is a disruption of
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service for all agents connected to it.
Organization. In section 2 we define the notion of a k-degenerate hypergraph.

In section 3 we present the general framework for online conflict-free coloring of hy-
pergraphs. In section 4 we introduce the randomized algorithm derived from the
framework. In section 5 we show deterministic online algorithms for intervals and
halfplanes with recoloring. In section 6 we describe the results for the hypergraphs
that arise from geometry. Finally, in section 7 we conclude with a discussion and
some open problems.

2. Preliminaries. We start with some basic definitions:
Definition 2.1. Let H = (V,E) be a hypergraph. For a subset V ′ ⊆ V let

H(V ′) be the hypergraph (V ′, E′) where E′ = {e ∩ V ′|e ∈ E}. We say that H(V ′) is
the hypergraph induced by V ′.

Definition 2.2. For a hypergraph H = (V,E), the Delaunay graph G(H) is the
simple graph G = (V, F ) where the edge set F is defined as F = {(x, y) | {x, y} ∈ E}
(i.e., G is the graph on the vertex set V whose edges consist of all hyperedges in H of
cardinality two).

Here is a graph theoretic common definition:
Definition 2.3. A graph G = (V,E) is called k-inductive (or k-degenerate) for

some positive integer k, if every (vertex-induced) subgraph of G has a vertex of degree
at most k.

We sensibly extend to a similar definition for hypergraphs.
Definition 2.4. Let k > 0 be a fixed integer and let H = (V,E) be a hypergraph

on the n vertices v1, . . . , vn. For a permutation π : {1, . . . , n} → {1, . . . , n} define
the n partial sums, indexed by t = 1, . . . , n,

Sπt =
t∑

j=1

d(vπ(j)),

where

d(vπ(j)) =
∣∣{i < j | {vπ(i), vπ(j)} ∈ G(H({vπ(1), ..., vπ(j)}))

}∣∣,
that is, d(vπ(j)) is the number of neighbors of vπ(j) in the Delaunay graph of the
hypergraph induced by {vπ(1), ..., vπ(j)}. Assume that for all permutations π and for
every t ∈ {1, . . . , n} we have

Sπt ≤ kt. (2.1)

Then, we say that H is k-degenerate.

3. A framework for online conflict-free coloring. Let H = (V,E) be any
hypergraph. Our goal is to define a framework that colors the vertices V in an online
fashion, i.e., when the vertices of V are revealed by an adversary one at a time. At
each time step t, the algorithm must assign a color to the newly revealed vertex vt.
This color cannot be changed in future times t′ > t. The coloring has to be conflict-
free for all the induced hypergraphs H(Vt) with t = 1, . . . , n, where Vt ⊆ V is the set
of vertices revealed by time t.

For a fixed positive integer h, let A = {a1, . . . , ah} be a set of h auxiliary colors
(not to be confused with the set of main colors used for the conflict-free coloring: {1,
2, . . . }). Let f : N+ → A be some fixed function. We now define the framework that
depends on the choice of the function f and the parameter h.
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A table (to be updated online) is maintained with row entries indexed by the
variable i with range in N+. Each row entry i at time t is associated with a subset
V it ⊆ Vt in addition to an auxiliary proper non-monochromatic coloring of H(V it ) with
at most h colors. We say that f(i) is the color that represents entry i in the table. At
the beginning all entries of the table are empty. Suppose all entries of the table are
updated until time t− 1 and let vt be the vertex revealed by the adversary at time t.
The framework first checks if an auxiliary color can be assigned to vt such that the
auxiliary coloring of V 1

t−1 together with the color of vt is a proper non-monochromatic
coloring of H(V 1

t−1 ∪ {vt}). Any (proper non-monochromatic) coloring procedure can
be used by the framework. For example a first-fit greedy method in which all colors
in the order a1, . . . , ah are checked until one is found. If such a color cannot be
found for vt, then entry 1 is left with no changes and the process continues to the
next entry. If however, such a color can be assigned, then vt is added to the set V 1

t−1.
Let c denote such an auxiliary color assigned to vt. If this color is the same as f(1)
(the auxiliary color that is associated with entry 1), then the final color in the online
conflict-free coloring of vt is 1 and the updating process for the t-th vertex stops.
Otherwise, if an auxiliary color cannot be found or if the assigned auxiliary color is
not the same as f(1), then the updating process continues to the next entry. The
updating process stops at the first entry i for which vt is both added to V it and the
auxiliary color assigned to vt is the same as f(i). Then, the color of vt in the final
conflict-free coloring is set to i.

It is possible that vt never gets a final color. In this case we say that the framework
does not halt. However, termination can be guaranteed by imposing some restrictions
on the auxiliary coloring method and the choice of the function f . For example,
if first-fit is used for the auxiliary colorings at any entry and if f is the constant
function f(i) = a1, for all i, then the framework is guaranteed to halt for any time
t. An example instantiation of the framework for conflict-free coloring with respect
to intervals is given in the example in section 6. In section 4 we derive a randomized
online algorithm based on this framework. This algorithm always halts, or to be
more precise halts with probability 1, and moreover it halts after a “small” number
of entries with high probability. We prove that the above framework produces a valid
conflict-free coloring in case it halts.

Lemma 3.1. If the above framework halts for any vertex vt then it produces a
valid online conflict-free coloring of H.

Proof. Let H(Vt) be the hypergraph induced by the vertices already revealed at
time t. Let S be a hyperedge in this hypergraph and let j be the maximum integer
for which there is a vertex v of S colored with j. We claim that exactly one such
vertex in S exists. Assume to the contrary that there is another vertex v′ in S colored
with j. This means that at time t both vertices v and v′ were present at entry j of
the table (i.e., v, v′ ∈ V jt ) and that they both got an auxiliary color (in the auxiliary
coloring of the set V jt ) which equals f(j). However, since the auxiliary coloring is a
proper non-monochromatic coloring of the induced hypergraph at entry j, S ∩ V jt is
not monochromatic so there must exist a third vertex v′′ ∈ S ∩ V jt that was present
at entry j and was assigned an auxiliary color different from f(j). Thus, v′′ got its
final color in an entry greater than j, a contradiction to the maximality of j in the
hyperedge S. This completes the proof of the lemma.

The above algorithmic framework can also describe some well-known deterministic
algorithms. For example, if first-fit is used for auxiliary colorings and f is the constant
function, f(i) = a1, for all i, then:
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• If the input hypergraph is induced by points on a line with respect to intervals
as in example 6.1 then the algorithm derived from the framework becomes
identical to the unique maximum greedy algorithm described and analyzed
in [9].

• If the input is a k-inductive graph (also called k-degenerate graph), the de-
rived algorithm is identical to the first-fit greedy algorithm for coloring graphs
online. The performance of the first-fit greedy algorithm for restricted classes
of graphs has been analyzed in several papers [10, 14, 12]. Especially for k-
inductive graphs, the first-fit greedy algorithm is analyzed by Irani [12], who
proved that it uses O(k log n) colors. Our framework can be used to give an
alternative simpler proof of the aforementioned result (see [19] for details).

4. An online randomized conflict-free coloring algorithm. There is a ran-
domized online conflict-free coloring algorithm in the oblivious adversary model that
always produces a valid coloring and the number of colors used is related to the degen-
eracy of the underlying hypergraph in a manner described in the following theorem.

Theorem 4.1. Let H = (V,E) be a k-degenerate hypergraph on n vertices. Then,
there exists a randomized online conflict-free coloring algorithm for H which uses at
most O(log1+ 1

4k+1
n) = O(k log n) colors with high probability against an oblivious

adversary.
The algorithm is based on the framework of section 3. In order to define the

algorithm, we need to state what is the function f , the set of auxiliary colors of each
entry and the algorithm we use for the auxiliary coloring at each entry. We use the set
A = {a1, . . . , a2k+1}. For each entry i, the representing color f(i) is chosen uniformly
at random from A. We use a first-fit algorithm for the auxiliary coloring.

Our assumption on the hypergraph H (being k-degenerate) implies that at least
half of the vertices up to time t that reached entry i (but not necessarily added to
entry i), denoted by Xt

≥i, have been actually given some auxiliary color at entry i

(that is,
∣∣V it ∣∣ ≥ 1

2

∣∣Xt
≥i
∣∣). This is due to the fact that at least half of those vertices vt

have at most 2k neighbors in the Delaunay graph of the hypergraph induced by Xt−1
≥i

(since the sum of these quantities is at most k
∣∣Xt
≥i
∣∣ and since V it ⊆ Xt

≥i). Therefore,
since we have 2k + 1 colors available, there is always an available color to assign
to such a vertex. The following lemma shows that if we use one of these available
colors then the updated coloring is indeed a proper non-monochromatic coloring of
the corresponding induced hypergraph as well.

Lemma 4.2. Let H = (V,E) be a k-degenerate hypergraph and let V jt be the
subset of V at time t and at level j as produced by the above algorithm. Then, for any
j and t if vt is assigned a color distinct from all its neighbors in the Delaunay graph
G(H(V jt )) then this color together with the colors assigned to the vertices V jt−1 is also
a proper non-monochromatic coloring of the hypergraph H(V jt ).

Proof. By induction on t. The induction hypothesis is that H(V jt−1) is properly
non-monochromatically colored by the auxiliary coloring. Let vt be the vertex added
to the hypergraph induced by the j-th entry at time t. Any hyperedge S that contains
at least two vertices of V jt−1 or does not contain vt is not monochromatic by the
induction hypothesis. Thus, we are only concerned with hyperedges of cardinality
two that contain vt and exactly one vertex of V jt−1. However, we assumed that vt
obtained a color that is distinct from any vertex u such that {u, vt} is a hyperedge of
H(V jt ) (Those are exactly the neighbors of vt in the corresponding Delaunay graph).
Thus, any such hyperedge {u, vt} is also not monochromatic. This completes the
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inductive step and hence the proof of the lemma.
We also prove that for every vertex vt, our algorithm always halts, or more pre-

cisely halts with probability 1.
Proposition 4.3. For every vertex vt, the algorithm halts with probability 1.
Proof. In order for the framework to not halt for vertex vt, it must be the case

that vertex vt reaches every entry i ∈ N+ and in every entry i the auxiliary color of
vt is different from f(i). If an entry is empty before time t and vt reaches that entry,
then vt gets the auxiliary color a1 in that entry and the probability that vt does not
get a main color in that entry is 1−h−1, where h = 2k+ 1 is the number of auxiliary
colors. The aforementioned events are independent for different empty entries. At
time t, all but at most t − 1 entries are empty. The above discussion implies the
following.

Pr[algorithm does not halt for vt] =
Pr[algorithm does not assign a main color to vt in any entry] ≤

Pr[algorithm does not assign a main color to vt in any empty entry] =

Pr[
⋂

i : empty entry

(algorithm does not assign a main color to vt in entry i)] =

∏
i : empty entry

Pr[algorithm does not assign a main color to vt in entry i] =

∏
i : empty entry

(1− h−1) = lim
j→∞

(1− h−1)j = 0

and therefore Pr[algorithm halts for vt] = 1.
We proceed to the analysis of the number of colors used by the algorithm, proving

theorem 4.1.
Lemma 4.4. Let H = (V,E) be a hypergraph and let C be a coloring produced by

the above algorithm on an online input V = {vt} for t = 1, . . . , n. Let Xi (respectively
X≥i) denote the random variable counting the number of points of V that were assigned
a final color at entry i (respectively a final color at some entry ≥ i). Let Ei = E[Xi]
and E≥i = E[X≥i] (note that X≥i+1 = X≥i −Xi). Then:

E≥i ≤
(

4k + 1
4k + 2

)i−1

n.

Proof. By induction on i. The case i = 1 is trivial. Assume that the statement
holds for i. To complete the induction step, we need to prove that E≥i+1 ≤ ( 4k+1

4k+2 )in.
By the conditional expectation formula, we have for any two random variables X, Y
that E[X] = E[E[X | Y ]]. Thus,

E≥i+1 = E[E[X≥i+1 | X≥i]] = E[E[X≥i −Xi | X≥i]] = E[X≥i −E[Xi | X≥i]].

It is easily seen that E[Xi | X≥i] ≥ 1
2

X≥i

2k+1 since at least half of the vertices of
X≥i got an auxiliary color by the above algorithm. Moreover each of those elements
that got an auxiliary color had probability 1

2k+1 to get the final color i. This is the
only place where we need to assume that the adversary is oblivious and does not have



8 A. BAR-NOY, P. CHEILARIS, S. OLONETSKY, AND S. SMORODINSKY

access to the random bits. Thus,

E[X≥i −E[Xi | X≥i]] ≤ E[X≥i −
1

2(2k + 1)
X≥i] =

4k + 1
4k + 2

E[X≥i] ≤
(

4k + 1
4k + 2

)i
n,

by linearity of expectation and by the induction hypotheses. This completes the proof
of the lemma.

Lemma 4.5. The expected number of colors used by the above algorithm is at
most log 4k+2

4k+1
n+ 1.

Proof. Let Ii be the indicator random variable for the following event: some
points are colored with a main color in entry i. We are interested in the number of
colors used, that is Y :=

∑∞
i=1 Ii. Let b(k, n) = log 4k+2

4k+1
n. Then,

E[Y ] = E[
∑
1≤i

Ii] ≤ E[
∑

1≤i≤b(k,n)

Ii] + E[X≥b(k,n)+1] ≤ b(k, n) + 1,

by Markov’s inequality and lemma 4.4.
We notice that:

b(k, n) =
lnn

ln 4k+2
4k+1

≤ (4k + 2) lnn = O(k log n).

We also have the following concentration result:

Pr[more than c · b(k, n) colors are used] =

Pr[X≥c·b(k,n)+1 ≥ 1] ≤ E≥c·b(k,n)+1 ≤
1

nc−1
,

by Markov’s inequality and by lemma 4.4.
This completes the performance analysis of our algorithm.
Remark. In the above description of the algorithm, all the random bits are chosen

in advance (by deciding the values of the function f in advance). However, one can
be more efficient and calculate the entry f(i) only at the first time we need to update
entry i, for any i. Since at each entry we need to use O(log k) random bits and
we showed that the number of entries used is O(k log n) with high probability then
the total number of random bits used by our algorithm is O(k log k log n) with high
probability.

5. Deterministic online algorithms with recoloring. In this section, we
relax the requirement that an online algorithm has to commit to the color of every
point, by allowing the algorithm to recolor a “few” of the points that have appeared
in the past. Our goal is to find deterministic online algorithms that use a logarithmic
number of colors and perform a total number of recolorings which is linear in n.
We manage to find such algorithms with respect to intervals and halfplanes. The
algorithm for halfplanes relies on an algorithm that colors points on a disk with
respect to circular arcs, where the adversary can additionally ask the algorithm to
substitute a set of consecutive points on the disk with a single point (we call this a
substitution move). As always, the coloring must remain conflict-free at all times.
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5.1. An O(log n) colors algorithm for intervals. We describe a deterministic
online conflict-free coloring algorithm for intervals that is allowed to recolor just a
single old point during each insertion of a new point. The algorithm is based on the
framework developed in section 3 where we use 3 auxiliary colors {a, b, c} and f is
the constant function f(l) = a, for every l. We refer to points colored with b or c as
d-points. In order to have only a logarithmic number of entries, we slightly modify
the framework (using a recoloring procedure) such that the number of points colored
with a in each entry of the table is at least one third of the total points that reach that
entry. To achieve this goal, our algorithm maintains the following invariant in every
level: There are at most two d-points between every pair of points colored with a (i.e.,
between every pair that are consecutively colored a among the a-points). Therefore,
at least a third of the points at each entry get color a, and two thirds are deferred for
coloring in a higher entry. The total number of colors is at most log3/2 n+ 1. When a
new point p arrives, it is colored according to the following algorithm, starting from
entry 1:

• If p is not adjacent to a point colored with an auxiliary color a then p is
assigned auxiliary color a and gets its final color in that entry.

• We color point p with b or c greedily as long as it does not break the invariant
that between any two consecutive a’s we have at most two d-points.

• It remains to handle the case where the new point p has a point colored with
a on one side and a point, say q, colored with d on the other side, such that
q has no adjacent point colored with a. We assign to p the auxiliary color of
q (thus it is a d-point) in the current entry and in all higher entries for which
q obtained an auxiliary color and assign to it the main color of q, and we
recolor q with the auxiliary color a (and delete the corresponding appearance
of it in all higher entries of he table), and thus we recolor q with the main
color of the current entry. At this point all points have an assignment of main
colors. It is not hard to check that when we recolor a point then we do not
violate the invariants at any entry: Let ` be the entry that caused recoloring,
all entries before it remain the same, the change in the entry ` does not break
invariants, all other entries remain the same except that point p appears there
instead of point q that was there before and there are no points between p
and q that appear in an entry higher than `.

An example run of the recoloring algorithm is shown in figure 5.1 for input π =
3754612. Vertex vt appears at time t, where t ranges from 1 to 7. The first row
of the table represents the order in which points appeared, the last row of the table
shows current color allocation. At every time step of the run, points whose colors
were changed (a new color, or a recoloring) by the last insertion are marked with
bold. Recolorings happen at t = 3 for v2, at t = 5 for v3, and at t = 7 for v6.

It can be easily checked that the recoloring algorithm produces a valid conflict-
free coloring, because it is essentially an instance of the general framework: After
every insertion (and a possible recoloring), the point of highest entry in each interval
is uniquely colored.

Also, it can be proven that the number of recolorings is at most n−(blog2 nc+1),
and this is tight.

Proposition 5.1. The number of recolorings in the above algorithm equals n−
(blog2 nc+ 1) in the worst case.

Proof. An input with n vertices uses at least blog2 nc+ 1 colors (see, for example,
optimal static coloring of points with respect to intervals in [2]). Whenever a new
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· · v1 · · · ·
1 a
2
3

· · 1 · · · ·

· · v1 · · · v2
1 a d
2 a
3

· · 1 · · · 2

· · v1 · v3 · v2
1 a d a
2 a
3

· · 1 · 2 · 1

· · v1 v4 v3 · v2
1 a d d a
2 d a
3 a

· · 1 3 2 · 1

· · v1 v4 v3 v5 v2
1 a d a d a
2 d a
3 a

· · 1 3 1 2 1

v6 · v1 v4 v3 v5 v2
1 d a d a d a
2 a d a
3 a

2 · 1 3 1 2 1

v6 v7 v1 v4 v3 v5 v2
1 a d a d a d a
2 a d a
3 a

1 2 1 3 1 2 1

Fig. 5.1. An example run of the recoloring algorithm

color is introduced during the run of the algorithm, there is no recoloring. Therefore,
there are at most n − (blog2 nc + 1) recolorings, because in every other insertion at
most one old point is recolored.

Now, we are going to show a family of instances for which the above algorithm
performs exactly n− (blog2 nc+ 1) recolorings. We use the relative positions notation
for the input, that was introduced in [1, 2]. We explain this notation briefly: Each
input of n requests of points is denoted by a sequence σ of n natural numbers, so that
the t-th element of the sequence, i.e., σt, is a natural number in [0, t − 1], and the
point requested at time t has exactly σt already requested points to the left of it.

We define, for k ≥ 1, an instance σk of length n = 2k− 1 for which our recoloring
algorithm uses k colors and does 2k − k − 1 recolorings. The instance σ1 = 0. For
k ≥ 1, the instance σk+1 is defined recursively:

σk+1 = σk ◦ (2k − 1, . . . , 2k − 1)︸ ︷︷ ︸
2k times

,

where ‘◦’ is the concatenation operation for finite sequences. Since, for every k, σk

is a prefix of σk+1, we have in fact provided an unbounded length relative positions
input

σ = 20 − 1︸ ︷︷ ︸
20

, 21 − 1, 21 − 1︸ ︷︷ ︸
21

, 22 − 1, . . . , 22 − 1︸ ︷︷ ︸
22

, . . . , 2k − 1, . . . , 2k − 1︸ ︷︷ ︸
2k

, . . .

or

σ = 0, 1, 1, 3, 3, 3, 3, 7, 7, 7, 7, 7, 7, 7, 7, . . .

The following can be proven by induction and we omit the easy but tedious details.
For each σk, the recoloring algorithm produces the coloring Ck, defined recursively
as C1 = 1 and Ck = Ck−1 ◦ (k) ◦ Ck−1, for k > 1. Therefore, for t < 2k, input σ
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is using at most k colors. The point inserted at t = 2k, which is the first point of
σk+1 (or σ) that is inserted at relative position 2k − 1, is colored with a new color
k + 1, and therefore no recoloring happens. For all subsequent 2k − 1 points inserted
at relative position 2k − 1, there is a recoloring by the algorithm. Therefore, for all
points, except the ones inserted at t = 1, 2, 4, . . . , 2k, . . . a recoloring happens, and
therefore after n insertions, n− (blog2 nc+ 1) recolorings happen in σ.

For example, the run of the recoloring algorithm on input σ3 is shown in figure 5.2,
where recolorings are shown with bold.

v1 · · · · · ·
1 a
2
3

1 · · · · · ·

v1 · v2 · · · ·
1 a d
2 a
3

1 · 2 · · · ·

v1 v3 v2 · · · ·
1 a d a
2 a
3

1 2 1 · · · ·

v1 v3 v2 · · · v4
1 a d a d
2 a d
3 a

1 2 1 · · · 3

v1 v3 v2 · · v5 v4
1 a d a d a
2 a d
3 a

1 2 1 · · 3 1

v1 v3 v2 · v6 v5 v4
1 a d a d d a
2 a d a
3 a

1 2 1 · 3 2 1

v1 v3 v2 v7 v6 v5 v4
1 a d a d a d a
2 a d a
3 a

1 2 1 3 1 2 1

Fig. 5.2. The run of the recoloring algorithm on input σ3

5.2. An O(log n) colors algorithm for circular arcs. We define a hypergraph
H closely related to the one induced by intervals: The vertex set of H is represented
as a finite set P of n distinct points on a circle C and its hyperedge set consists of
all intersections of the points with some circular arc of C. In the static case, it is not
difficult to show that n points can be optimally conflict-free colored with respect to
circular arcs with blog2(n− 1)c+ 2 colors: There must be a point p with unique color
in P , and therefore all circular arcs that include p have the conflict-free property; the
remaining n − 1 points of P \ {p} and the remaining circular arcs induce the same
hypergraph as the set of intervals on n − 1 points, which is optimally colored with
blog2(n− 1)c+ 1 more colors. Here, we are interested in an online setting, where the
set P ⊂ C is revealed incrementally by an adversary, and, as usual, the algorithm
has to commit to a color for each point without knowing how future points will be
requested. Algorithms for intervals can be used almost verbatim for circular arcs. In
fact, the recoloring algorithm for intervals, given in section 5.1, can be used verbatim,
if the notion of adjacency of points is adapted to the closed curve setting (for n ≥ 3,
each point has exactly 2 immediate neighboring points, whereas in the intervals case,
the two extreme points have only one neighbor). Again, in each entry `, at least a
third of the points is assigned auxiliary color a, and thus at most log3/2 n + 1 colors
are used.
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5.3. An O(log n) colors algorithm for circular arcs with substitution of
points. We consider a variation on the problem of online conflict-free coloring with
respect to circular arcs that was given in section 5.2. In this new variation, the
adversary has, in addition to the insertion move of a new point, a substitution move:

The adversary can substitute a set Q of already requested consecutive
points with a single new point p, and the algorithm has to color p,
such that the whole set of points is conflict-free colored with respect
to circular arcs (in that new set, p is included, but all points in Q are
removed).

Our algorithm for this variation of the problem relies on the one given in sec-
tion 5.2. For an insertion move of the adversary, it colors the new point like in
section 5.2. For a substitution move of the adversary, it colors the new point p, with
the highest color occurring in the points of Q. Point p also gets the entries of the
unique point q ∈ Q with the highest color. It is not difficult to see that the coloring
remains conflict-free after each move. We remark that a recoloring can happen only in
an insertion move and that substitution moves do not make the algorithm introduce
new colors. The following is true for every t:

Lemma 5.2. After t moves, the above coloring algorithm uses at most log3/2 t+1
colors.

Proof. During a substitution move we might break the invariant that between
any pair of consecutive a’s there are at most two d-points. However if we denote in
each entry a point colored with a which was substituted by ā, then it can be proven
that between any two consecutive points colored with a or ā, there are at most two
d-points and thus it implies that at least one third of the points in every level are
colored either by that level or have been substituted. We call these points colored with
ā ghost points. Moreover, we assign ghost points to substitution points as follows.
If a point p substitutes a point p′ colored with a, p′ becomes a ghost point and p is
assigned the ghost point p′. If a point p substitutes a point q which has some ghost
points, p is assigned all ghost points of q. We ignore the trivial substitution of one
point colored with a and do not create a ghost point and any assignment in this case.
It is not difficult to see that at any point in time each ghost point is assigned to
exactly one non-ghost point.

We intend to make the above argument formal as follows. We will prove the
stronger result that the number of colors used by the algorithm is at most log3/2 i+1,
where i is the number of insertion moves until time t. In order to prove the previous
statement it is enough to show that at each entry `, the number of points getting
auxiliary color d in entry ` is bounded by the number of insertion moves that reached
entry ` as follows.

d` ≤ d 23 i`e (5.1)

where d` is the number of points getting auxiliary color d in entry ` and i` is the
number of insertion moves that reached entry `. The above inequality is true when
no points have reached entry `. Moreover, it remains true as long as a substitution
move happens, or an insertion move happens in which the point at entry ` is colored
with a. The number of d’s increases only if there is an insertion move where the point
at level ` is colored with d. We will study further this last case. For a new point p
to get auxiliary color d it must be the case that it is inserted next to a point colored
with a and a point q colored with d such that q is adjacent to a point colored with a.
In a fixed entry `, we call a maximal set of consecutive points colored with d a strip.
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The length of a strip s is the number of d’s in it and is denoted by len(s). It is not
difficult to see that if there is at least one a in entry `, as in our case, the number of
strips is the same as the number of a’s.

The number of insertion moves that reach entry ` satisfies the following equation.

i` ≥ a` + d` + ā` (5.2)

where a` is the number of points colored with a, and ā` the number of ghost points
(points substituted that were colored with a). We have an inequality, because we omit
the points substituted that were colored with d. If a strip s has length len(s) > 2, it
necessarily contains ghost points. In fact if a strip s has length len(s), one can prove
that points in it have been assigned at least d 12 len(s)e − 1 ghost points. We defer
the proof of the above fact to lemma 5.3. Because of all the above, inequality (5.2)
implies the following.

i` ≥ a` +
∑

s : strip

len(s) +
∑

s : strip

(d 12 len(s)e − 1) =
∑

s : strip

d 32 len(s)e

The above inequality implies

b 23 ilc ≥ b
2
3

∑
s : strip

d 32 len(s)ec ≥ b
∑

s : strip

len(s)c =
∑

s : strip

len(s) = d`

which is inequality (5.1).
Lemma 5.3. The points in a strip s have been assigned at least d 12 len(s)e − 1

ghost points.
Proof. We prove the above fact by induction on t. For t = 0 it is trivially true.

For length of a strip at most two, again it is trivially true because d 12 len(s)e − 1 = 0.
We ignore trivial substitutions of one point colored with a because they do not change
the lengths of the strips and do not create ghost points. Assume there is a strip of
length greater than two. Necessarily, the last action in the strip was a substitution
move, because in an insertion the algorithm never colors with d, if there are already
two d points in the strip. There are two possible cases for a substitution move.

In the first case, there is a substitution of only d points as shown in figure 5.3,
i.e., the substitution is completely contained in one strip, say of length L′, and the
new strip created has length L ≤ L′. In this case, the number of ghost points in the

L′︷ ︸︸ ︷
dddd dddd. . .ddddd︸ ︷︷ ︸

substitution

dd

Fig. 5.3. A substitution move contained in one strip

new strip is the same as the number of ghost points in the old strip, which is, by the
inductive hypothesis, at least d 12L

′e − 1, which is at least d 12Le − 1.
In the second case, the substitution spans more than one strip, i.e., also some

(non-ghost) points colored with a. Say that the substitution spans k a’s which are
surrounded by k+1 strips of lengths L1, . . . , Lk+1, as shown in figure 5.4. The length
of the new strip is L ≤ L1 + Lk+1 + 1 if k ≥ 2, and L ≤ L1 + L2 if k = 1 (this
last inequality is true because there can be no trivial substitution). In this case, the
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L1︷ ︸︸ ︷
dddddd a

L2︷ ︸︸ ︷
ddddd a. . .a

Lk︷ ︸︸ ︷
ddddd a︸ ︷︷ ︸

substitution

Lk+1︷ ︸︸ ︷
dddd

Fig. 5.4. A substitution move spanning more than a strip

number of ghost points in the new strip is the same as the number of ghost points in
the k + 1 strips plus k, which is at least

k+1∑
i=1

(d 12Lie − 1) + k ≥ d 12
k+1∑
i=1

Lie − 1 ≥ d 12Le − 1

In the above, we used the inductive hypothesis for each of the k + 1 strips.

5.4. An O(log n) colors algorithm for halfplanes. In this section we describe
a deterministic algorithm for online conflict-free coloring points with respect to half-
planes that uses O(log n) colors and performs O(n) recolorings. Thus, it can also
be modified for conflict-free coloring points in the plane with respect to unit disks
as described in section 6 (see proof of corollary 6.3). At every time instance t, the
algorithm maintains the following invariant (Vt is the set of points that have appeared
so far):

All points (strictly) inside the convex hull of Vt are colored with the
same special color, say ‘?’. The set of points on the convex hull of Vt,
denoted by CH(Vt), are colored with another set of colors, such that
every set of consecutive points on the convex hull has a point with a
unique color.

Every non-empty subset of points of Vt induced by a halfplane contains a set of
consecutive points on the convex hull of Vt, and thus the whole coloring is conflict-
free. If one considers the points of CH(Vt) in their circular order on the convex hull,
it is enough to conflict-free color them with respect to circular arcs. The number of
colors used in CH(Vt) must be logarithmic in t.

We describe how the algorithm maintains the above invariant. A new point vt+1

that appears at time t + 1 is colored as follows: If it is inside the convex hull of Vt,
then it gets color ‘?’. Otherwise, the new point vt+1 will be on CH(Vt+1), in which
case we essentially use the algorithm of section 5.3 to color it. We have two cases,
which correspond to a substitution and an insertion move, respectively:

• It might be the case that vt+1 forces some points (say they comprise set Q)
that were in CH(Vt) to appear in the interior of CH(Vt+1), so in order to
maintain the invariant, all points in Q are recolored to ‘?’, and vt+1 is colored
with the maximum color occurring in Q (this is like a substitution move of
section 5.3).

• If, on the other hand, no points of CH(Vt) are forced into the convex hull,
then point vt+1 ∈ CH(Vt+1) is colored like in an insertion move of section 5.3,
with the algorithm for circular arcs. In that last case, in order to maintain
logarithmic number of colors on t, one recoloring of a point in CH(Vt+1) might
be needed.

The total number of recolorings is guaranteed to be O(n), because for every insertion,
at most one recoloring happens on the new convex hull, and every point colored with
‘?’ keeps that color for the rest of the algorithm run.
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6. Application to geometry. Our randomized algorithm has applications to
conflict-free colorings of certain geometric hypergraphs studied in [5, 9, 13, 6]. We
obtain the same asymptotic result as in [5] and [6] but with better constant of pro-
portionalities and using much fewer random bits. For example, if the hypergraph H
is induced by intervals, it can be proven (with an analysis similar to the one given
in section 4) that for any order of insertion of n points, when the auxiliary color for
each entry is chosen uniformly at random from {a, b, c}, the expected number of colors
used is bounded by log3/2 n + 1. It is interesting that the best known upper bound
for dynamically coloring n points deterministically, when the whole insertion order is
known in advance, is also log3/2 n + 1 (see, for example, [2] for further details). In
our algorithm the expected number of colors is bounded by 1 + log3/2 n ≈ 1.71 log2 n,
whereas in [5] and [6] by 1+log8/7 n ≈ 5.19 log2 n, three times our bound. We provide
a run example for the algorithm on intervals.

Example. Consider the case where the hypergraph is induced by points with
respect to intervals. Namely, V = {1, . . . , n} and E consists of all possible discrete
intervals of V (i.e., subsets of consecutive integers). Vertices appear one by one and at
each time t we must have an online conflict-free coloring with respect to the discrete
interval subsets of the t points revealed by time t. It is not difficult to see that the
hypergraphs H(V it ) can always be properly non-monochromatically online 3-colored
(say with auxiliary colors a, b, c) as follows: Each newly inserted point has at most
two immediate neighbors and thus even a first-fit coloring suffices. In figure 6.1, we
exhibit a run of the algorithm for the permutation π = 253164, seen as a mapping
from time t ∈ {1, . . . , 6} to the corresponding vertex at position π(t).

In the end the vertices look like π−1 = v4v1v3v6v2v5, where vt is the vertex
appearing at time t. The choices are f(1) = b, f(2) = a, f(3) = c, f(4) = a, f(5) = b,
f(6) = a. The six tables correspond to t = 1, . . . , 6 and at the bottom of each table the
online conflict-free coloring, so far, is shown. Entries correspond to rows in the tables,
where for each entry i the following data is given: the representing color f(i) and
the proper non-monochromatic auxiliary coloring of the vertices in the hypergraph
V it with three colors a, b or c.

Observe that entries 3 and 5, respectively, do not have a vertex colored with f(3)
and f(5), respectively. As a consequence colors 3, 5 do not appear in the conflict-free
coloring although colors 1, 2, 4, 6 do. If it is important to use consecutive colors,
namely k different colors implies they are {1, . . . , k}, the above problem can be fixed
by assigning the next unused conflict-free color to an entry i only as soon as a vertex
in entry i is colored with auxiliary color f(i). The above remedy works in our general
framework, not only in the specific case of this example.

When H is the hypergraph obtained by points in the plane intersected by half-
planes or unit disks, we obtain online randomized algorithms that use O(log n) colors
with high probability. Before proceeding it is necessary to prove a degeneracy result
about hypergraphs induced by halfplanes.

Lemma 6.1. Let V be a finite set of n points in the plane and let E be all subsets
of V that can be obtained by intersecting V with a halfplane. Then the hypergraph
H = (V,E) is 3-degenerate.

Proof. We assume that points are in general position, i.e., no three of them are
on the same line. We also assume that points are inserted in some order v1, v2, . . . ,
vn. Following the notation of definition 2.4 on page 4, it is enough to prove that for
every t, we have

St ≤ 3t (6.1)
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i f(i) · v1 · · · ·
1 b a
2 a a
3
4
5
6

· 2 · · · ·

i f(i) · v1 · · v2 ·
1 b a b
2 a a
3
4
5
6

· 2 · · 1 ·

i f(i) · v1 v3 · v2 ·
1 b a c b
2 a a b
3 c a
4 a a
5
6

· 2 4 · 1 ·

i f(i) v4 v1 v3 · v2 ·
1 b b a c b
2 a a b
3 c a
4 a a
5
6

1 2 4 · 1 ·

i f(i) v4 v1 v3 · v2 v5
1 b b a c b a
2 a a b a
3 c a
4 a a
5
6

1 2 4 · 1 2

i f(i) v4 v1 v3 v6 v2 v5
1 b b a c a b a
2 a a b c a
3 c a b
4 a a b
5 b a
6 a a

1 2 4 6 1 2

Fig. 6.1. A run example of the framework for hypergraphs induced by points with respect to
intervals

(we remark that we have dropped the permutation π, appearing in inequality (2.1)
on page 4, because it is implied by the order v1, v2, . . . , vn). We prove something
stronger than inequality (6.1), namely that

St + Ct ≤ 3t, (6.2)

by induction, where Ct is the number of points on the boundary of the convex hull at
time t, which is always a positive number. It will be helpful to define the following
differences:

∆St = St − St−1,

∆Ct = Ct − Ct−1.

The difference ∆St is exactly the number of neighbors of vt in the Delaunay graph
G(H({v1, . . . , vt})). For vt to be a neighbor of vt′ , with t′ < t, in the Delaunay graph,
there must exist a halfplane at time t which contains exactly vt and vt′ .

First, we show that inequality (6.2) is true for small values of t. For t ∈ {1, 2, 3},
inequality (6.2) is true as exhibited in table 6.1, because the size of the convex hull is
the same as the number of points and every two points are neighbors in the Delaunay
graph.
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Table 6.1
Edges in Delaunay graph for halfplanes and size of convex hull for small values of t

t 1 2 3

St 0 1 3
Ct 1 2 3

St + Ct 1 3 6

Then, for the inductive step, for t > 3, it is enough to prove that

∆St + ∆Ct ≤ 3, (6.3)

because then the sum St +Ct increases at most by 3 at every time step and therefore
always remains bounded by 3t. Denote the convex hull of points {v1, . . . , vt} with
CHt. Consider the following two cases. Either vt lies outside of the convex hull
CHt−1 or vt is inside the convex hull CHt−1.

Assume vt lies outside of the convex hull CHt−1 (see figure 6.2). Then vt lies on

vt

CHt−1

vt

CHt

Fig. 6.2. The new point is outside the old convex hull

the boundary of the boundary of the convex hull CHt. Consider the two points u and
w that are the neighbors of vt in the cyclic order of points on the convex hull CHt (see
figure 6.3). Consider the line ` passing through u and w. This line partitions points of

vt

u

w

`

v′

v′′

Fig. 6.3. Delaunay graph neighbors of a new point outside the old convex hull
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CHt−1 in two types: (a) points on ` or in the same halfplane as vt defined by ` (points
like u, v′, w in figure 6.3) and (b) points on the other halfplane defined by ` (points
like v′′ in figure 6.3). Vertex vt is adjacent to every vertex v′ of type (a) (including u,
w) in the Delaunay graph, because one can take a halfplane with defining line passing
through v′ and slope between the slopes of the incident sides to v′ of the convex hull
CHt−1, and this halfplane contains only vt and v′. On the other hand, no vertex v′′

of type (b) is a neighbor in the Delaunay graph with vt, because every halfplane that
contains vt and v′′ must contain at least one of u, w. Assume there are d vertices of
CHt−1 of type (a), with d ≥ 2. Then, ∆St = d and d − 2 of them no longer appear
on the convex hull, but vt appears on CHt, i.e., ∆Ct = −(d − 2) + 1. Therefore, we
have proved that when vt lies outside CHt−1, ∆St + ∆Ct = d+−(d− 2) + 1 = 3, i.e.,
inequality (6.3) is true.

Assume vt is inside the convex hull CHt−1 (see figure 6.4). Then, consider any
triangulation of CHt−1. Point vt is in exactly one triangle of the triangulation, call

vt

CHt−1 = CHt

z

x y

Fig. 6.4. A triangulation of the convex hull in case the point vt is in the convex hull CHt−1

it xyz, where x, y, z are points on the convex hull, corresponding to points inserted
before vt. It is not difficult to prove that every halfplane that contains vt, contains at
least one of x, y, z. Therefore vt can have at most three neighbors in the Delaunay
graph. The three neighbors case can be realized when the only points on the convex
hull are x, y, z, i.e., when t = 4, by taking for every point p ∈ {x, y, z} a halfplane that
contains p, and the defining line of the halfplane (a) is passing through vt and (b) is
parallel to the line passing through the other two points in {x, y, z}. If there are more
than three points in CHt−1, we will prove that it is not possible for vt to have all three
neighbors x, y, z in the Delaunay graph. Assume for the sake of contradiction that
there is a halfplane hx containing only vt and x, a halfplane hy containing only vt and
y, and a halfplane hz containing only vt and z. For every point p ∈ {x, y, z} define the
halfline starting at vt with direction −→pvt, not containing p. These halflines are shown
in figure 6.5. These three halflines partition the plane into three areas, Ax, Ay, Az,
each one containing one of the points x, y, z, respectively. We now consider halfplanes
containing at least vt. It is not difficult to see that such a halfplane containing only
x and not y or z must contain all of Ax. Similarly, such a halfplane containing only y
and not x or z must contain all of Ay, and such a halfplane containing only z and not
x or y must contain all of Az. Therefore, any other point contained in CHt−1 except
x, y, z must be contained in one of hx, hy, and hz, which is a contradiction. Thus,
we have proved that when vt is in CHt−1, ∆St ≤ 3 and ∆Ct = 0, i.e., inequality (6.3)
is true.

Corollary 6.2. Let H be a hypergraph as in lemma 6.1. Then, the expected
number of colors used by our randomized online conflict-free coloring algorithm applied
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vt

z

x y

Az

Ax

Ay

Fig. 6.5. A partition of the plane

to H is at most log 14
13
n+1, in the oblivious adversary model. Also the actual number of

colors used is O(log 14
13
n) with high probability. The number of random bits is O(log n)

with high probability.
Proof. The proof follows from lemmata 6.1, 4.5 and theorem 4.1.
Corollary 6.3. Let V be a set of n points in the plane and let E be the set of

all subsets of V that can be obtained by intersecting V with a unit disk. Then, there
exists a randomized online algorithm for conflict-free coloring H which uses O(log n)
colors and O(log n) random bits with high probability, against an oblivious adversary.

Proof. In [13], it was observed that by an appropriate partitioning of the plane
one can modify any online algorithm for conflict-free coloring points with respect
to halfplanes to an online algorithm for conflict-free coloring points with respect to
congruent disks. The congruent disks algorithm uses a constant multiple of the colors
used by the halfplanes algorithm. Using the same technique as developed in [13] and
corollary 6.2 we obtain the desired result.

7. Discussion and open problems. We presented a framework for online
conflict-free coloring any hypergraph. This framework coincides with some known
algorithms in the literature when restricted to some special underlying hypergraphs.
We derived a randomized online algorithm for conflict-free coloring any hypergraph (in
the oblivious adversary model) and showed that the performance of our algorithm de-
pends on a parameter which we refer to as the degeneracy of the hypergraph which is a
generalization of the known notion of degeneracy in graphs (i.e., when the hypergraph
is a simple graph then our notion is similar to the classical definition of degeneracy
of a graph; see definition 2.3). Specifically, if the hypergraph is k-degenerate then
our algorithm uses O(k log n) colors with high probability, which is asymptotically
optimal for any constant k, and O(k log k log n) random bits. This is the first efficient
online conflict-free coloring for general hypergraphs and subsumes all the previous
randomized algorithmic results of [5, 9, 13, 6]. It also substantially improves the ef-
ficiency with respect to the amount of randomness used in the special cases studied
in [5, 9, 13, 6]. Another interesting fact to note is that our algorithm when applied
to k-inductive graphs gives an online coloring of such graphs with O(k log n) colors
with high probability. In [12], it was shown that the same bound can be achieved
deterministically by the first-fit greedy algorithm.

It would be interesting to find an efficient online deterministic algorithm for
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conflict-free coloring k-degenerate hypergraphs. Even for the very special case of
a hypergraph induced by points and intervals (as in the example in section 6) where
the number of neighbors of the Delaunay graph of every induced hypergraph is at
most two), the best known deterministic online conflict-free coloring algorithm from
[9] uses Θ(log2 n) colors. We hope that our technique together with a possible clever
derandomization technique can shed light on this problem.

As mentioned already, the framework of section 3 can describe some known al-
gorithms such as the unique maximum greedy algorithm of [9] for online conflict-free
coloring points on a line with respect to intervals. No sharp asymptotic bounds are
know for the performance of unique maximum greedy. The best known upper bound
is linear (asymptotically n/2 from [1, 2]), whereas the best known lower bound is
Ω(
√
n). We believe that this new approach could help analyze the performance of

unique maximum greedy.
In section 5 we initiate the study of online conflict-free coloring with recoloring:

We provide a deterministic online conflict-free coloring for points on the real line with
respect to intervals and show that our algorithm uses Θ(log n) colors and at most one
recoloring per insertion. This is in contrast with the best known deterministic online
conflict-free coloring for this case that uses Θ(log2 n) colors in the worst case without
recoloring, by [9]. We also present deterministic online algorithms for conflict-free
coloring points with respect to circular arcs and halfplanes (and unit disks) that use
O(log n) colors and O(n) recolorings in the worst case. In the special case of intervals
or circular arcs at most one point is recolored per insertion.

It would be interesting to find a deterministic online conflict-free coloring algo-
rithm for points in the plane with respect to halfplanes that uses Θ(log n) colors in
the worst case and recolors at most a constant number of points per insertion. We
leave this as an open problem for further research.

All of our randomized algorithms assume the oblivious adversary model, in which
the adversary has to commit to a specific input sequence before revealing the first
vertex to the algorithm without knowing the random bits that the algorithm is go-
ing to use and the expected number of colors is analyzed. The randomized model
can be seen as a relaxation of the strict deterministic model: some power is taken
from the adversary, or equivalently given to the algorithm, in order to achieve just a
logarithmic number of colors. Another such relaxation is to give extra information
to the algorithm about where each requested point will end up in the final coloring
(the absolute positions model, which was introduced in [1, 2]). Other such relaxations
are given in [1, 2] (coloring with respect to rays) and [16] (online ranking of paths).
In this work we introduced yet another relaxation, the recoloring model, in which
the algorithm is allowed to recolor some of the points. An interesting question is to
construct O(log n) colors algorithms that rely as little as possible on their extra power
(as few random bits as possible, as few recolorings as possible). Towards that goal, in
a unified framework, we provided the best known results: randomized algorithm that
use an expected logarithmic number of random bits, and recoloring algorithms that
perform at most a linear number of recolorings.
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